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ABSTRACT

The seasonal predictability of the North Atlantic basin is assessed with the help of an empirical model. The
model statistics uses the singular value decomposition of the cross-covariance matrix between the predictor (sea
surface temperature anomalies) and the predictand (850-hPa air temperature anomalies) at a lag equal to the
forecast lead. Three decades (1970–2000) are forecast at different lead times.

Highest skill values are found in the subtropics, near Bermuda and around the Iberian Peninsula. Skill values
similar to these last can be found near the U.S. coast in autumn. In one of these regions, the model forecast
sucessfully more than 50% of the variance of the unfiltered predictand field. In large regions of the domain, the
skill values beat those obtained by assuming persistence. Therefore, we propose to use this model, instead of
persistence, to assess the performance of the seasonal forecasts of midlatitude anomalies made with atmospheric
GCMs.

1. Introduction

Though there has been considerable improvement in
the atmospheric general circulation models (GCMs),
they are not yet able to forecast the midlatitude atmo-
spheric anomalies one season ahead. The bias in the
simulated climatology of some of the atmospheric var-
iables is one of the major problems. The forecast eval-
uation is another: the need for a number of independent
predictions to quantify the forecast results (Brankovic
and Palmer 2000) makes the task of producing hindcasts
for several decades very expensive from the computa-
tional point of view. Although some advances have been
made in those directions recently (Kanamitsu et al.
2002; Derome et al. 2002), our knowledge of the GCM’s
low-frequency variability is still very poor.

The statistical analysis of the observed climate pro-
vides the empirical understanding of the atmosphere–
ocean interactions that is the basis of empirical forecast
models. Empirical models for the Tropics (as in, e.g.,
Penland and Magorian 1993; Ruiz de Elvira and
OrtizBeviá 1995; Penland and Matrosova 1998; Ruiz
de Elvira et al. 2000) have shown useful skill values.
Unfortunately, the skill of empirical forecasts for the
midlatitudes, as in Shabbar and Barnston (1996), Jo-
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hansson et al. (1998), and Vautard et al. (1999), is only
modest. But their low computational costs and the avail-
ability of new extended datasets allow the production
of forecasts for several decades, more than one season
ahead. The analysis of these long empirical forecasts
can assist GCM predictions, either by identifying the
main sources of interannual variability within a given
region or by assessing the effect of remote low-fre-
quency signals on the forecast skill.

The empirical forecasts presented here were intended
as a benchmark to assess the GCM forecast skill in the
European Union–funded project Prediction of Climate
Variations on Seasonal to Interannual Timescales (PRO-
VOST). As part of this project, three state-of-art GCMs
were set to simulate the atmospheric variability at 3-
months lead, in a set of dynamical ‘‘hindcast’’ experi-
ments. Meanwhile, retroactive real-time forecasts were
made with the empirical model for 3 decades (1970–
99), at leads ranging from 1 season to 1 yr.

Air temperature at 850 hPa (hereinafter T850) was
chosen as a common target for all the PROVOST fore-
casts. Compared with other possible candidates, T850
has the advantages of being relevant for the North At-
lantic climate, well represented in the National Centers
for Environmental Prediction–National Center for At-
mospheric Research (NCEP–NCAR) and ERA reanal-
yses, and also well connected to surface air temperature.
In a first set of experiments, reported in SánchezGómez
et al. (2001, 2002, hereinafter SG01 and SG02), several
oceanic and atmospheric predictor fields in different
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spatial domains (several regions of the North Atlantic
and/or the North Pacific) were used. In those first fore-
casts the variability connected to timescales below 8
months was removed from both predictor and predictand
datasets in order to focus on the low frequencies. The
experiment skills were acceptable (up to 56% of the
variance of the filtered field, equivalent to 36% of the
unfiltered one) in two regions, one in the central part
of the subtropical gyre, near Bermuda, and the other
over the Iberian Peninsula. Unfortunately, one of the
main goals of the work was not accomplished, as it
turned out that the model skill could beat the persistence
skill only in a reduced region of the domain. These were
our grounds for modifying the forecast model layout,
leaving predictor and predictand datasets practically un-
filtered (more than 90% of the raw-field anomalous var-
iability is retained) but assessing the forecast skill on a
seasonal basis, as in Johansson et al. (1998). Because
of the superior performance, reported in SG01 and
SG02, of the North Atlantic oceanic predictors, and in
particular the SST anomalies, only SST was used as
predictors.

In the following section a brief description of the
predictor and predictand fields is given. In section 3,
we describe the general features of the empirical fore-
casts method and the seasonal layout. In section 4, we
present the results of the empirical forecasts experiments
and analyze two cases studies. Conclusions and final
remarks are given in section 5.

2. Datasets

The predictand field values, T850 anomalies, were
obtained from the NCEP–NCAR reanalyses (Kalnay et
al. 1996). These were monthly means in a 2.58 3 2.58
grid. The period selected is 1948–2000. As the main
predictor field, we have chosen the monthly values of
SST anomalies. For forecast purposes, we built an SST
field for the period 1950–99 by merging the Compre-
hensive Ocean–Atmosphere Data Set (COADS; 1950–
93) (Woodruff et al. 1987) and the Integrated Global
Ocean Services System (IGOSS; 1982–99) (Reynolds
and Smith 1994) dataset, as detailed in SG01. For the
merged dataset, IGOSS observations have been inter-
polated to the COADS 28 3 28 grid. Because we built
our own predictor dataset, it was possibile to issue fore-
casts in real time. A comparison of our predictor field
with the Hadley Centre Sea Ice and Sea Surface Tem-
perature (HadISST) dataset (Rayner et al. 2000) was
presented in SG01. The spatial domain of both the T850
and SST fields is a sector of the North Atlantic (208–
908N, 908W–108E) that includes large parts of the coasts
of Europe, the United States, and Canada, and also the
Caribbean.

In our seasonal scheme, the predictor field is sepa-
rated into four sets of 3 months each, according to the
seasonal phase. Each set will be called a PRE, so PRE1
encompasses the winter months (December, January,

February), PRE2 the spring months (March, April,
May), etc. The name has been chosen to emphasize that
the PREs are not seasonal means. Nevertheless, we will
see later that the covariance matrices are computed on
a seasonal basis.

3. Forecast model and layout

The empirical model from which our forecasts are
derived has as its core the singular value decomposition
(SVD) of the lagged cross-covariance matrix between
predictor and predictand fields. This statistical technique
is able to isolate pairs of patterns from both predictor
and predictand fields that maximize their covariance un-
der orthogonality assumptions.

For a forecast at a given lead l, issued from a certain
PRE, we first compute the anomalies of the predictor
y(t) and predictand z(t) fields (by substracting their
monthly mean) and then calculate the lagged cross-co-
variance matrix C between both, for all the months in-
cluded in the PRE:

tp

T TC 5 ^z(t)y (t 2 l)& 5 z y , (1)O i i2l
i511l

where tp is the time of the forecast start. By its SVD,
C can be written:

N

TC 5 w u v , (2)O k k k
k51

where uk and vk are the singular vectors associated with
the predictand and predictor fields, respectively, and wk

is the k-th singular value of C.
The SVD yields pairs of seasonal patterns that isolate

coupled features where the time evolution of the pre-
dictor field must theoretically precede the time evolution
of the predictand field at the lead time considered. Fur-
thermore, the patterns can be ordered decreasingly by
their corresponding singular value, which gives us the
amount of the coupled covariance explained at lag l. A
reduction of the number of degrees of freedom is then
straightforward (Bretherton et al. 1992; Navarra 1993).

Through the projection of each field onto the corre-
sponding vector, we obtain empirical coefficients for the
predictand [ak(t)] and predictor [bk(t)] fields. The time
coefficients represent the temporal evolution of the sin-
gular pattern k. The forecast value ẑq(t) at the time tp

1 l is built by an expansion in which the predictor time
coefficient bk(t 2 l) is weighted by the singular vector
of the predictand field:

q

ẑ (t ) 5 c b (t 2 l)u , (3)Oq p k k p k
k51

where ck is the empirical coefficient relating the tem-
poral evolution of ak(t) and bk(t 2 l).

Likewise, the predictand field zq(tp) is given in the
form
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FIG. 1. Illustrative scheme of the forecast procedure. Only the information from the training
period is used to produce the forecasts.

q

z (t ) 5 a (t )u . (4)Oq p k p k
k51

By truncation, we retain only the first singular modes
q that together are supposed to explain most of the joint
variability of both fields (the total number of modes is
N). As the time series projected on these seasonal sin-
gular vectors is formed with monthly values, we obtain
a monthly forecast, whose skill is nevertheless assessed
on a seasonal basis. The procedure followed to build
the empirical model is represented in Fig. 1. The sea-
sonal forecast layout, similar to the one used in the
analysis of Czaja and Frankignoul (1999), is shown
schematically in Fig. 2.

In the empirical forecasts both the predictand and
predictor fields are divided in two segments: training
sample and validation period. For one forecast l seasons
ahead, starting at PRE i, year j, the training sample is
formed with the observations in all the years preceding
the start of the forecasts. Predictions are assessed against
the anomalies computed from the validation period that
begins with the dataset (1948) and includes the forecast
time interval. The procedure followed here has been
designed to produce a real forecast, not a hindcast, since
only the ‘‘past’’ is used to make a prediction. Never-
theless, as the validation value is known beforehand,
these have been called ‘‘retroactive real-time forecasts’’
(Barnston et al. 1994).

Each of the months in the four predictor sets sepa-
rately forecasts one of the months in a season of the
predictand field. Figure 2 schematizes the sequence: as
the lead time varies (from 3 to 12 months), the PRE

predicts the predictand season. The forecast experiments
are systematically repeated for the four PRE. To assess
the skill at a certain lag l of a PRE, the three forecasts
performed at lead l with this PRE are taken into account.
This reduces drastically the training sample size. In or-
der to avoid the problems derived from a short training
interval, this sample size is gradually increased, taking
into account the corresponding PRE in all the years
previous to the start of the forecast. Finally, the skill of
the forecasts is assessed through the correlation between
the predictand field (reconstructed with q patterns) and
the forecast field.

Field significance

As the number of spatial patterns used to forecast is
not small, the problem of an artificial skill obtained by
overfitting has to be considered. The levels of the artificial
skill are estimated using a bootstrap procedure (Efron
and Tibshirani 1993). Following Yuval (2001), a large
number (100) of artificial predictor and predictand fields
are obtained by random sampling of the original ones.
The time series of the predictand and predictor fields is
split into several segments, or blocks, of the same length.
Then the replicas are built by the random reorganization
of the segments. The point where the division starts is
changed for each realization. To ensure statistical inde-
pendence, the blocks’ lengths are selected as the largest
values in the decorrelation time, as defined in Livezey
and Chen (1983). The number of times the real skill is
under the simulated values provides the significance lev-
el. For the evaluation of the empirical forecasts, persis-
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FIG. 2. The sequence of the forecast procedure for the seasonal scheme. Given a predictor
field, the target season changes as the forecast lead time increases.

tence-based predictions have been a common reference
in previous forecasts and are also used here.

4. Forecast experiments

Previous to the forecasting, the optimal number of
patterns to be used in the reconstruction and forecast of
the predictand field has to be decided. The choice made
here is partially based on the percentage of cumulative
variance explained. We have also taken into account, as
in SG01 and SG02, how well the counterpart in the
T850 field of the North Atlantic Oscillation (NAO), the
dominant climatic signal in this region, is represented
in the reconstructed field. From this study, it is inferred
that the optimal number of patterns to be retained is 20
(which accounts for more than 90% of the variance of
the unfiltered field).

a. Forecast skill of North Atlantic T850 anomalies

Seasonal forecasts of the T850 anomalies at different
lead times were made, following the scheme represented
in Fig. 2. The forecasted period goes from 1970 through
2000. The forecasts have been made from 3 (spring is
the targeted season) to 12 (in this case it is winter)
months ahead. In the forecasts at 3- and 6-months lead
times, the highest values of the skill are found in two

regions. In one, located in the subtropics, the skill levels
exceed a value of 0.5 when summer is the target season.
In the forecasts for summer and autumn, there is a sec-
ondary maximum over southern Europe. In this last
case, the values are similar to those along the U.S. coast.
When the winter SST are used to forecast the following
winter, values of the skill fall significantly. For reasons
of space, we will present only the skill averages to the
regions depicted in Fig. 3. The selection of these regions
is based on the differences found in the skill levels
mentioned above. The skill of the PRE1 forecast is rep-
resented in this way in Fig. 4 (top). Our forecasts do
achieve a significant improvement against persistence,
as can be observed in Fig. 5.

b. Seasonal dependence of forecast skill

Seasonal changes in the skill that were barely no-
ticeable in SG01 because of the time filtering can be
studied here. We give only a brief account of this study.
For region I, the skill is higher in summer, notwith-
standing the lead time. Skill values are not statistically
significant at the 95% level in regions III and IV. In
regions II (near the Iberian Peninsula) and V (along the
U.S. coast), there is a maximum of skill in summer and
autumn. In general, for the five regions in the domain,
the skill decreases as the forecast lead time increases.



DECEMBER 2003 3065N O T E S A N D C O R R E S P O N D E N C E

FIG. 3. The regions in which the values of the skill have been
averaged: region I (208–408N, 758–308W), region II (358–508N,
308W–08), region III (608–708N, 258–108W), region IV (458–658N,
858–558W), and region V (308–458N, 908–708W).

FIG. 4. Comparison of the skill values obtained by the retroactive
real-time forecasts (top) against those of the crossvalidation forecasts
(bottom). The values of the skill have been averaged over the five
regions defined in Fig. 3: region I (solid), region II (dash), region III
(dot–dash), region IV (dot–dot–dash), and region V (dots).

However, there are some situations in which the skill
shows relative insensitivity to the forecast lead time, as
for instance in the case of region I for the summer
season. This fact is encouraging for long-lead forecast
purposes.

c. Cross-validation experiments

Decadal timescales are known to play an important
part in the anomalous variability of the midlatitudes
observations. Until recently, the record length of the
midlatitudes observations was at the most 40 years, and
was at very sparsely distributed stations. Therefore,
most of the midlatitude empirical forecast models men-
tioned in the introduction used cross-validation exper-
iments to assess their skills. In most of the cross-vali-
dation experiments, as is the case in those presented
here, only the target year is withheld from the training
sample. This technique can provide representative re-
sults with respect to real forecasts, although, as pointed
out in Barnston et al. (1994), there is a danger of skill
inflation because of the existence of important inter-
annual autocorrelation in the data.

On the other hand, the ENSO empirical forecasts pre-
sented in the forecast forum of the Climate Diagnostic
Bulletin (http://www.cpc.ncep.noaa.gov) have shown,
with the same limitations in the training sample length,
a considerable skill compared with those made with the
more sophisticated coupled GCM. Encouraged by this
example, we have chosen to make retroactive real-time
forecasts. Nevertheless, cross-validation experiments
for all the PREs have also been included in the present
study. From these, we show in Fig. 4 the cross-validation
skill values (bottom) of the four regions monitored for
the PRE1 experiments (predictor in winter) to be com-
pared with those of the retroactive real-time forecasts
(top) in the same conditions. With the present forecast

scheme, the skill inflation seems less important than in
the case of the filtered forecasts presented in SG01.

d. Two case studies: Winter of 1976 and summer of
1994

As in SG01, the model performance is illustrated in
two particular situations where sizeable and persistent
air temperature anomalies were observed: the winter of
1976 and the summer of 1994. The forecasts in Fig. 6
are compared with their counterparts in SG01 (Figs.
10,11 there). The left-hand column in Fig. 6 represents
(a) the predictand field, (b) the forecast, and (c) the
predictor field one year in advance for T850 anomalies
in winter 1976. The only difference between this pre-
dictor field and the one in SG01 is the magnitude of
the SST anomalies: the highest positive anomalies south
of Newfoundland were 0.5 K in SG01 and reach 1 K
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FIG. 5. Comparison with the persistence forecasts. The difference between the skill of the model and the skill obtained assuming
persistence has been computed. The shaded region indicates where the model beats the persistence.

here. Differences in the forecast field are important.
Forecasts in SG01 were only able to reproduce the pos-
itive atmospheric signal south of Newfoundland, miss-
ing the warm anomaly in northern Europe that is cap-
tured here. There is also a better estimation of the mag-
nitude of the atmospheric anomalies.

Likewise, the right column in Fig. 6 represents (d)
the predictand field, (e) the forecast, and (f ) the predictor
field one year in advance in the case of the summer of
1994. The SST pattern is characterized here by a warm-
ing in the central part of the subtropical Atlantic and
northwest Europe and a cooling adjacent to the North
American coast and over the north of the domain. In
SG01 the model was succesful at predicting the sign of
the positive T850 anomalies over the North American
coasts and the Iberian Peninsula. But the forecast again
improves, since the magnitude of the anomalies (even
the negative ones) is better captured here.

e. Origin of the forecast skill

The origin of the forecast skill is investigated through
the analysis of the singular vectors used to forecast,

among which the first singular patterns play a leading
part. The oceanic pattern remains almost invariant to the
forecast lead. It represents a bipolar structure between
the region east of North America, where the subtropical
and subpolar gyres converge, and the southern part of
the subtropical gyre (the region of Bermuda). For lead
times from 3 to 6 months, highest loadings in the oceanic
pattern are for the coast of Iberia and the Bermuda region.
However, this center of action weakens for lead times
above 9 months. Some of the features of this oceanic
predictor can be distinguished in the oceanic forcing pat-
tern used to forecast the 1994 summer (Fig. 6f).

The predictand pattern is more sensitive to the fore-
cast lead time and thus depends on the target season.
For all of the cases studied, the highest loadings cor-
respond to the subtropical region, where the best values
of the skill have been found. The skill captures the
atmospheric response along the eastern coast of the ba-
sin (North America) at 3-months lead time, while at
greater leads there is an increase in skill over Iberia,
North Africa, and the Mediterranean when the target
seasons are summer (6-months lead time) and autumn
(9-months lead time).
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FIG. 6. Two case studies: the cold winter of 1976 (left-hand side) and the warm summer of 1994 (right-hand
side). The (c), (f ) 12-months-ahead forecasts are shown against (a), (d) the air temperature (K) and (b), (e) the SST
observations (K).

5. Summary and conclusions

This study is based on the hypothesis of Bjerkness
(1964) that the red-noise variability in the ocean, which
is forced by the atmosphere at short timescales, may in

turn induce or alter atmospheric anomalies. We study
the seasonal predictability of the North Atlantic, using
an empirical model based on the SVD of the seasonal
cross-covariance matrix computed between the predic-
tand field (850-hPa air temperature anomalies) and the
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predictor field (SST anomalies). The causal relationship
between the atmosphere and the ocean is captured by
computing the seasonal cross-covariance matrix at a lag
corresponding to the forecast lead.

The basic feature of the empirical model used here
has been already introduced in previous papers (SG01;
SG02). There the empirical model was applied to filtered
fields (roughly 50% of the variance of the unfiltered
field was retained), while here the fields have been only
slightly smoothed (more than 90% retained). In the pres-
ent study, we find that the predictability is mainly con-
fined to the subtropical region around Bermuda. During
the summer and autumn, the predictability spreads over
the Iberian Peninsula and the Mediterranean. Some of
these results appear also in SG01, but here the amount
of variance explained is in some cases above 50% of
the total variance of the field, while there it explained
barely 36%. Here, there is also a skill improvement
(with respect to the SG01 forecasts) in a region along
the U.S. coast in autumn, with values similar to the ones
found near the Iberian Peninsula. This improvement is
connected to the inclusion of the timescales between 6
and 9 months.

The origin of the forecast skill can be traced back to
the relationship between an oceanic dipole pattern and
the atmospheric variability. One of the centers of action
of this pattern is located in a region to the east of New-
foundland where the subtropical and the subpolar gyres
converge and the other is located in the southern part
of the subtropical gyre, near Bermuda.

The skill dependence on the annual cycle is on the
target rather than on the predictor season. The predict-
ability increases when summer is the target season. This
fact is in good agreement with the remarks by Brankovic
et al. (1994) and also by Schubert et al. (2001). During
the summer, the internal chaotic dynamics of the at-
mosphere weakens, the predictability is enhanced, and
the extratropical lower-boundary forcing plays a more
relevant part in the dynamics.

The new version of the model achieves a significant
improvement of its skill, as compared with the persis-
tence skill, over most of the domain. In this sense, we
present here an improved benchmark to the forecast of
atmospheric anomalies made with atmospheric GCMs.
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