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ABSTRACT

Long-range empirical forecasts of North Atlantic anomalous conditions are issued, using sea
ice concentration anomalies in the same region as predictors. Conditions in the North Atlantic
are characterized by anomalies of sea surface temperature, of 850 hPa air temperature and of
sea level pressure. Using the Singular Value Decomposition of the cross-covariance matrix
between the sea ice field (the predictor) and each of the predictand variables, empirical models
are built, and forecasts at lead times from 3 to 18 months are presented. The forecasts of the
air temperature anomalies score the highest levels of the skill, while forecasts of the sea level
pressure anomalies are the less sucessful ones.

To investigate the sources of the forecast skill, we analyze their spatial patterns. In addition,
we investigate the influence of major climatic signals on the forecast skill. In the case of the air
temperature anomalies, the spatial pattern of the skill may be connected to El Niño Southern
Oscillation (ENSO) influences. The ENSO signature is present in the predictor field, as shown
in the composite analysis. The composite pattern indicates a higher ( lower) sea ice concentration
in the Labrador Sea and the opposite situation in the Greenland–Barents Seas during the warm
(cold) phase of ENSO. The forecasts issued under the El Niño conditions show improved skill
in the Labrador region, the Iberian Peninsula and south of Greenland for the lead times
considered in this paper. For the Great Lakes region the skill increases when the predictor is
under the influence of a cold phase. Some features in the spatial structure of the skill of the
forecasts issued in the period of the Great Salinity Anomaly present similarities with those
found for forecasts made during the cold phase of ENSO. The strength of the dependence on
the Great Salinity Anomaly makes it very difficult to determine the influence of the North
Atlantic Oscillation.

1. Introduction and Hasselmann, 1977). This red noise variability,
associated with the larger spatial and longer tem-
poral scales, could in turn feed back on theAtmospheric conditions at midlatitudes typi-
atmosphere in ways yet to be explored (Desercally change during one week, whereas in the
et al., 2000). The interannual variability of sea ice,ocean, conditions persist longer. For this reason,
forced by the atmospheric circulation, throughclimatologists turn to the ocean to issue long-term
wind stress and heat fluxes (Walsh and Johnson,forecasts of atmospheric variability. In a first
1979; Fang and Wallace, 1994), can also beaproximation, the anomalous variability of midlat-
explained as the local response to atmosphericitude oceans can be modelled as a linear response
forcing (Lemke et al., 1980). Thereafter the sea iceto the stochastic atmospheric forcing (Frankignoul
pattern might force some atmospheric variability
(Mysak and Venegas, 1998). On the other hand,
it has been shown that sea ice concentration* Corresponding author.
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(hereinafter SIC) anomalies present a moderate of SST anomalies about 1 or 2 years in advance.
The second EOF of winter SST (not shown)ENSO influence (Gloersen, 1995; Mysak et al.,

1996). explains a 24% of the total variance of the field
and is a tripole pattern with one center of actionThe bases for long-range forecasting in the

North Atlantic were laid by Radcliffe and Murray in eastern Newfoundland covarying out-of-phase
with two centers situated one over the north-(1970), who pointed at the lagged correspondence

between North Atlantic sea surface temperature eastern Atlantic and northern Europe, and the
other over Bermuda and the Caribbean Sea and(hereafter SST) anomalies and European pressure

field. There are a number of empirical models that Gulf Stream region. The first EOF, which accounts
for 26% of the variance, is scarcely related to SIC.explore the skill of SST anomalies at predicting

the North Atlantic atmospheric variability SIC anomalies in the Labrador sea could influ-
ence, in a few months, the waters near Bermuda(Barnett et al., 1984; Johansson et al., 1998;

Vautard et al., 1998). The authors of the present through advection by the Labrador current and
further entrainment by the Gulf Stream (Pickartwork have also tackled this topic in a previous

paper (SánchezGómez et al., 2001). In it, the same et al., 1997). SIC anomalies could also reach this
region through subsurface transport, and in thisstatistical technique (singular value decomposi-

tion, SVD, of the cross-covariance matrix) and the way, their influence could be noticed after more
than one year (Curry et al., 1998). However, duesame forecast scheme, were employed to forecast

850 hPa air temperature (T850) anomalies in the to the regional nature of sea ice, it is not clear
whether SIC anomalies could predict the large-North Atlantic, taking SST anomalies as well as

various atmospheric variables as predictors. The scale conditions in the North Atlantic. Our aim is
to test this possibility with an empirical forecastassessment of the skill of the sea ice concentration

anomalies at forecasting the atmospheric circula- model. We then investigate the origin of the
forecast skill, which leads to a better knowledgetion in the North Atlantic basin is a natural

extension of this previous work. of the atmospheric and oceanic variability in the
North Atlantic basin.Figure 1 is a reproduction of Fig. 10 in Deser

and Blackmon (1993). It shows the lagged correla- The paper is organized as follows: in Section 2
we describe the data used as predictor and pre-tion between the standardized time series of the

second empirical orthogonal function (EOF) of dictand fields as well as the details of their prelimi-
nary treatment. An analysis of the fields involvedthe North Atlantic winter SST and the SIC anom-

alies averaged over the Davis Strait–Labrador Sea in the forecasts is briefly presented in Section 3.
Section 4 contains a short description of theregion. This relationship suggests that the SIC

anomalies could be used to forecast the evolution forecast scheme and in Section 5 the results are

Fig. 1. Reproduction of Fig. 10 in Deser and Blackmon (1993): time series of the second EOF of winter (November–
March) SST anomalies (dashed) and SIC anomalies averaged in the Davis Strait–Labrador Sea region (solid). The
second EOF of winter SST anomalies explains a 24% of the variance. Both time series have been standardized
and detrended.
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presented and analyzed. Finally the findings are concentration). They are monthly data, gridded
1°×1°. Because of the paucity of the data beforesummarized and discussed in Section 6.
1950, we have decided to start the analysis only
after January 1950. SIC anomalies are obtained
in the same way as for the other fields.2. Data

Since we are interested in long-range forecasts,
a preliminary filtering has been used to focus onTwo atmospheric variables are used here to

characterize the anomalous atmospheric circula- the variability associated with the large spatial
and longer temporal scales. The atmospheric spec-tion: 850 hPa air temperature (T850) and sea level

pressure (SLP) anomalies. T850 has the advantage trum shows a significant peak at the period around
7–8 months and much noise below 6 months. Theof being closely connected to sea level air temper-

ature, while not being sensitive to the different SIC anomalies spectrum is essentially red, with a
strong annual and semi-annual dependency (thetopographies of the GCM models, and it is known

to be well represented in the NCEP Reanalyses latter absent in the atmospheric spectra). To
optimize the performance of the SVD method,(T. Palmer, personal communication, 1997). Sea

level pressure is directly related to the global and prior to each forecast realization, we filter the
time series of predictor and predictand fields,atmospheric circulation, and it is by far the longest

and best observational dataset available. removing the variability in timescales shorter than
8 months. This filter is computed in the timeData of T850 for the period 1958–1998 are

extracted from the NCEP Reanalyses dataset domain, using the convolution form. Let r
l
be the

smoothing function and s
k

the time series to be(Kalnay et al., 1996; http://www.cdc.noaa.gov/),
and anomalies computed by subtraction of this filtered, then the discrete convolution of these

functions is:41-year climatology. The resultant field contains
monthly anomalies, in a 2.5°×2.5° grid. The SLP

s∞
j
= (r1s)

j
= ∑

(L/2)+h(j)

k=−(L/2)+g(j)
s
j+k
r
j+k

(1)data were obtained from the GMSLP dataset
from the Hadley Centre, and are monthly means
given in a 5°×5° grid. The period 1950–1994 h( j )=0, g( j )=

L

2
−+1; 1∏ j∏

L

2nearly coincides with that of the air temperature
above and is selected from the available record

h( j )=g( j )=0;
L

2
+1∏ j∏N−

L

2
length (1881–1994) and its climatology removed
in order to obtain SLP anomalies. SST data are
part of the HadISST1 dataset (Rayner et al., 2000),

h( j )=−
L

2
+N− j, g( j )=0;

also from the Hadley Centre. For the reasons
explained above, we work with the last 50 years,
then anomalies are obtained from the 1950–1999 N−

L

2
+1∏ j∏N

climatology. Originally on a 1°×1° grid, thses
data have been interpolated to a 2°×2° grid. where j=1, . . . , N, L is the width of the smoothing

function, and h, non-zero only near the borders,The common domain of the three predictand
fields (SLP, SST and T850 anomalies) is the North allows the window to become asymmetric there,

thereby avoiding the inclusion of any informationAtlantic basin, from 90°W to 10°E, and from 20°N
to 90°N as can be appreciated in Fig. 6, for of the future into the training sample. In this way

we ensure that the prediction issued is a realinstance. In the east, the region selected includes
large part of coastal Europe. In the west, it includes forecast. Predictor and predictand fields are split

into training sample and validation period. Thepart of the US and Canadian coast, and also
the Caribbean, a region of tropical–extratropical training sample includes those points used to

compute the cross-covariance matrix. The valida-interactions.
As predictor field, we have used SIC anomalies tion period is formed by the forecast months. The

same convolution filter is used through all thein the Greenland Sea, Labrador Sea and Davis
Strait. They were obtained from the HadISST forecasts, and through all the experiments.

To study the origin of the skill we take intorecord (Hadley Centre) from 1871 to 1998, and
range from 0 (no sea ice) to 1 (maximum sea ice account three major climatic signals: the Great
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Salinity Anomaly, the El Niño Southern a bimodal character in the pattern of Fig. 2, as
reflected in the different magnitudes of the loadingsOscillation (ENSO) and the North Atlantic

Oscillation (NAO). The latter two signals are in Labrador and Greenland-Barents Seas. The
time coefficient in Fig. 3a also shows a differencerespectively monitored by their indices: the Niño3

index [averaged SST anomalies in the Niño3 in the behaviour of SIC anomalies around the late
seventies. This is the signature of the Great Salinityregion (150°W–90°W, 5°S–5°N)] and the NAO

index, calculated from the filtered (periods shorter Anomaly (hereinafter GSA).
The GSA is the most important anomalousthan 8 months were removed) SLP anomalies

data as the difference between Lisbon (Portugal ) climatic variability in the North Atlantic related
to sea ice. This feature was a widespread fresheningand Stykkisholmur (Iceland), according to

Hurrell (1996). of the upper layer of the subpolar gyre waters
during 1968–1982 (Dickson et al., 1988). Some
consider this episode as part of a pentadecadal
oscillation, associated with fluctuations in the3. Analysis of predictor and predictand data

sets strength of the East Greenland current (Delworth,
1997), whereas for others (Mysak et al., 1990) it
is one, exceptionally strong example, of a numberA preliminary analysis of the distinct fields in

terms of their respective EOFs has been per- of salinity anomalies that take place with a pre-
ferred decadal timescale. Possible pathways toformed. In this way, we try to determine the spatial

scales favoured for each variable. The EOFs tem- explain the influence of ENSO and of the NAO
on it have been outlined in Mysak et al. (1990)poral coefficients, or principal components (PCs),

allowed us to identify preferred timescales of vari- and in Mysak and Venegas (1998), respectively.
The mode of variability in Figs. 2 and 3a isability. The first EOF of the predictor field (SIC

anomalies), represented in Fig. 2, shows the high- undoubtedly relevant to the predictability due to
the amount of variance explained, so we will useest loadings over the Greenland Sea. This spatial

pattern, which explains 66% of the variance of the time coefficient in Fig. 3a as an index to
distinguish, among all the forecast months, thoseoriginal field, as well as its evolution in time

(Fig. 3a), resembles the first EOF of Deser et al. with more SIC (hereinafter ICE+), with a negative
value of the time coefficient, from these with less(2000). All seasons, not only winter as in the

mentioned work, have been used in our analysis, SIC in the Greenland Sea (hereinafter ICE−),
with a positive value of the coefficient.which could explain the absence here of the out-

of-phase relationship between the Greenland- The first EOF of the SST anomalies (explaining
roughly 20% of the field variance, not shown)Barents and Labrador Seas. Nevertheless there is

Fig. 2. First EOF of SIC anomalies during 1950–1998. The EOF accounts for a 66% of the total variance of the field.
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Fig. 3. Standardized time coefficients for the first EOF of the SIC anomalies (a), SST anomalies (b) and 850 hPa air
temperature anomalies (c). The EOFs account for a 66%, 20% and 24% of the variance of each field, respectively.
The time coefficients have been filtered to remove the variability with periods shorter than 8 months.

presents a center of anomalies near Newfoundland, cross-covariance matrix between predictor and
with weaker anomalies of opposite signs to the predictand field. The SVD yields pairs of autovec-
north-east and south-west. The associated time tors that correspond to coupled features where
coefficient in Fig. 3b shows the GSA signature the time evolution of the predictor field must
from 1968 to 1982. The first EOF of the air theoretically precede the time evolution of the
temperature (explaining 24% of the variance of predictand field at the lead time considered.
the field) presents a warm latitudinal band as Furthermore, the patterns can be ordered decreas-
response to the high-pressure centre in the Azores. ingly by their corresponding singular value, which
The GSA period cannot be easily spotted from its gives us the amount of the coupled covariance
temporal coefficient (Fig. 3c), which instead shows explained at lag l. A reduction of the number of
a high correlation (0.69) with the NAO index. The degrees of freedom is then straightforward.
first EOF (50% of the variance) of the SLP field Through the projection of each field onto the
closely resembles the NAO pattern, with the two corresponding vector we obtain empirical coeffi-
pressure cells centered around Iceland and the

cients of the time evolution of each pattern. In
Azores. The GSA signature is again not that

our predictive scheme, the predictor’s evolution in
evident, while the correlation with the NAO index

time is related with that of the predictand through
(0.82) is even higher than in the T850 case.

some empirical coefficients at lag l. Further details

of the statistical method are given in Bretherton

et al. (1992), Navarra (1993) and of the forecast4. Forecast method and layout
scheme in SánchezGómez et al. (2001).

The scheme is summarized as follows: (1) theFor a forecast at a given lead l, we use the
singular value decomposition (SVD) of the lagged temporal filtering is applied to predictor and
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predictand fields (Section 3); (2) the cross-covari- repeated whenever a month within the validation
period is to be forecast.ance matrix is computed and the SVD calculations

are carried out; (3) we obtain the time coefficients As in many other recent forecast studies, the
choice of the optimal number of patterns used inby the projection of each field onto the singular

patterns; (4) a second filtering is performed by the reconstruction and forecasts of the predictand field
is partly based on the percentage of variancereduction of degrees of freedom; (5) finally the

forecasts are issued and its quality evaluated. explained. We have also taken into account how
well the NAO is represented in the filtered field.In Fig. 4 we present schematically the procedure

followed. In Fig. 5 we present the percentage of variance
explained by the predictand field as a function ofAs already explained, the fields involved in this

analysis are divided in two segments: training the number of singular vectors retained. We also
show there the correlation between the NAOsample and validation period. The training sample

includes those months used for the estimation of index, as computed from the unfiltered predictand
field, and the NAO index obtained from thethe parameters of the model. The validation period

is the time interval to be forecasted. The procedure filtered predictand field, against the number of
singular vectors used in its reconstruction.followed has been shown to produce a real

forecast, not a hindcast, since only the ‘past’ is Figure 5 suggests that a truncation after the
fifteenth term would be satisfactory. Then, in allemployed to issue a prediction. Almost four dec-

ades have been forecast in the case of SST our forecasts, we have truncated the expansion
after the fifteenth term for both the forecast field(1960–1999) and the SLP (1960–1994) and nearly

three (1970–1998) for the T850. and the reconstructed predictand field.
The skill of the forecasts is assessed through theThe optimal size of the training sample was

investigated in SánchezGómez et al. (2001). The correlation between the predictand field (recon-
structed with 15 patterns) and the forecast one.authors concluded that for fields originating from

non-linear dynamics, relatively short training Values of the skill must be above the zero confid-
ence interval, which can be roughly estimated atintervals (the tangent approximation) could per-

form better than longer datasets. In this work, the the 95% significance level as Ss=2/
�M, for values

of M, the size of the validation period, greatertraining interval is 120 months for the SLP and
SST fields and 144 months for the air temperature than 20. We will call this value Ss the significant

skill. Also, and because the number of spatialfield. It should be noted that the training sample
is continuously updated, as SVD calculations are patterns used to forecast is not small, the problem

Fig. 4. Schematic representation of the forecast procedure. In all the experiments the lag between predictor and
predictand coincides with the forecast lead time.
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Fig. 5. Cumulative variance explained for the 850 air temperature anomalies (predictand field) as a function of the
number of singular vectors retained (solid line). Correlation between the NAO indices respectively computed from
the original field and from its reconstruction with the number of singular vectors on the horizontal axis (dashed
line). The NAO index is computed as the difference between the 850 hPa air temperature anomalies averaged over
the regions (25°W–2.5°W, 37.5°N–45°N) and (25°W–12.5°W, 62.5°N–70°N).

of an artificial skill obtained by overfitting has to Atlantic SST anomalies, North Atlantic T850
anomalies and North Atlantic SLP anomalies.be considered. This artificial skill, Sa , has been
The respective validation periods are 1960–1998,estimated from a large number (NE=100) of
1970–1998 and 1960–1994.Montecarlo forecast experiments following the

Forecasts were produced at different lead times,same scheme presented above. For each of these,
ranging from 3 to 18 months, the skill of oura different synthetic predictor field has been used.
model beats persistence for those greater than 6These field are a ‘proxy’ for the SIC anomalies,
months. Results are presented solely for theassuming that the evolution in time of this variable
12-month lead time, as values within the intervalcan be modelled by a Langevin equation (Lemke
8–15 months yield equivalent forecast skills.et al., 1980):

Concerning the first experiment (SST is the
predictand field), the highest skill occurs in the

dy
t

dt
=−by

t
+w
t

(2)
Gulf Stream region, near the coast of the Iberian
Peninsula and in the Greenland, Iceland andwhere the feedback parameter b at each grid point
Norwegian (hereinafter GIN) Seas. As shown in(estimated from the observations) is fixed but w

t
,

Fig. 6a, most of the skill in these northern regionsthe (white) driving noise, which represents the
(not shaded) seem to be due to persistence. Foratmospheric forcing, has a different realization for
forecasts issued more than 12 months ahead, theeach experiment. The average skill of those experi-
forecast skill beats the persistence one (with valuesments provides an estimation of the artificial
between 0.6 and 0.5) in the storm formation regionskill Sa . near the Gulf of Mexico, and around the north-As a control measure of the results given by the
western part of the Iberian Peninsula.empirical model, the skill of the forecasts made by

As in the second experiment, prediction of theassuming persistence is also considered.
North Atlantic T850 anomalies, shown in Fig. 6b,
the highest values of the skill seem to radiate from
the tropics, thereby pointing to a tropical source5. Forecast experiments and skill
for the skill. Skill levels (0.8 in the tropics) are
higher than in the previous experiment. The

5.1. Forecasts experiments and results
forecast skill improves compared to persistence

With the SIC anomalies as predictor, three main in the western part of the United States, the
experiments are always carried out, corresponding Caribbean Sea, the Canarian Archipelago and

between Spain, France and the British Isles.to the three distinct predictand fields: North
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Fig. 6. Forecast skill for the whole period of validation for each of the experiments: (a) SST anomalies, (b) 850 hPa
air temperature anomalies, and (c) SLP anomalies. The regions where the skill is under the values estimated for the
artificial skill are indicated ( light shaded). The regions where the skill of the model is above persistence are also
emphasized (dark shaded). Contours above 0.6 have been represented by a thick line.

Results for the last experiment (prediction of 5.2. Analysis of the origin of the forecast skill
North Atlantic SLP anomalies), as depicted in
Fig. 6c, present values of the skill lower than those Additional analyses were carried out to identify

the origin of the forecast skill. The goal is to tryfound in the other experiments. In some regions
(Greenland, central North Atlantic and Africa) the to establish the possible connection between the

predictability in the North Atlantic region and theskill for lead times from 3 to 6 months is above
0.5, but this value quickly drops to 0.3 for forecasts three relevant climate signals: the GSA, the ENSO

and the NAO. Emphasis is put on the forecasts ofissued more than 5 months ahead. Only in a small
region over Greenland do skill levels exceed 0.5 air temperature anomalies 12 months ahead due

to their greater success.for lead times up to 15 months.
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A decadal dependence of the skill can be readily for each of the seasons separately. The skill
patterns obtained (not shown) indicate that theseen if the forecast skill is determined separately

for the seventies (Fig. 7a), eighties (Fig. 7b) and annual changes in the forecasts are slight (this is
due presumably to the filtering), although morenineties (Fig. 7c). The loss of skill in the eighties

is evident. skillful predictions are scored preferably in winter
and summer.The seasonal dependence of the skill was also

investigated in further detail. The observed and The first influence we address is that of GSA, a
feature of the predictor that will be monitored byforecast fields have been separated according to

the annual cycle: December, January and February the first PC of this field (Fig. 3a). Negative values
of this time series imply higher SIC aroundfor winter, and so on. Next the skill is computed

Fig. 7. Decadal dependence of the skill. Forecast skill for the seventies (a), eighties (b) and nineties (c) for the 850 hPa
air temperature anomalies as predictand is represented. The regions where the skill is under the values estimated
for the artificial skill are indicated ( light shaded). The regions where the skill of the model is above persistence are
also emphasized (dark shaded). Contours above 0.6 have been represented by a thick line.
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Greenland (conditions refered as ICE+) whereas be more effective than the ICE+ in the exchanges
with the overlying atmosphere. The regressionthe opposite is true for positive values (ICE−).

Forecast skill is computed separately for months pattern (not shown) of surface turbulent heat flux
anomalies on the time coefficient of the first EOFunder the distinct ICE+/ICE− conditions, in

order to assess the effect of GSA on the predictabil- of sea ice confirms this hypothesis (Deser et al.,
2000). There is an above normal heat transferity of air temperature. As the forecast period starts

in 1970, the size of the ICE+ sample is much from the ocean surface to the atmosphere when
the first PC of sea ice (Fig. 3a) is positive.smaller than that of the ICE−. To avoid the

statistical complexities that this would introduce, Additional composite analysis has been made (not
shown) and indicates that the T850 anomaliesan ICE− sample of the same size as the ICE+

sample has been built, by including only the last during the ICE− conditions presents, with respect
to the ICE+ situation, a significant warming overmonths in the ICE− period. Figure 8 shows this

dependence. It is clear from the figure that, in the the east of Greenland, Europe and the rest of the
domain south of 45° and a cooling west ofICE− case (Fig. 8b), the forecasts slightly improve

in the north of the domain and worsen in a small Greenland and in the Baffin Bay. This goes along
with the changes in intensity of the high- andregion over the Iberian Peninsula and west coast

of Africa in relation to the ICE+ case. In general, low-pressure centers characteristic of the North
Atlantic circulation.except for the regions mentioned, both ICE+ and

ICE− conditions yield almost equivalent skill The period of ICE+ goes from the beginning
of the record to the late seventies. From that pointpatterns. The fact that the forecast changes in the

north and northeastern part of the domain sug- onwards, conditions changed to the ICE− situ-
ation. Model forecasts for the eighties, trainedgests a local effect. The ICE− conditions seem to

Fig. 8. Forecast skill corresponding to the 850 hPa air temperature for the ICE+ (a) and ICE− (b) conditions. The
skill has been calculated as the correlation between the forecast and observed field through the period described in
the text. The regions where the values of the skill are under those of the artificial skill are indicated by a light
shading. Contours above 0.6 have been represented by a thick line.

Tellus 54A (2002), 3



       255

under ICE+ air sea interactions, are unable to Mediterranean region and in a small area over
Baffin Bay and the Davis Strait. Note that in thispredict the ICE− situations, hence the drop of

skill in this decade. study part of North and South Tropical Atlantic
has been included. The picture shown in this figureWe have also investigated the extent to which

such a remote signal as ENSO could affect the is congruent with the influence of ENSO events
on the Tropical Atlantic as stated by Lau (1997)forecasts. Composites of the predictor (SIC) and

predictand (T850) fields according to the phases and Klein et al. (1999). The mentioned works
highlight how anomalies in the atmospheric circu-of ENSO are presented in Fig. 9. The differences

between the warm and cold phase are computed lation in the equatorial Pacific can produce
changes in the evaporation and cloud cover, whichand tested for statistical significance using a univa-

riate ANOVA test. From Fig. 9a it appears that in turn modify the heat flux flowing into the other
remote tropical oceans. Concerning the Northduring the warm (cold) events the SIC present

negative (positive) anomalies in the Greenland Tropical Atlantic, the warm events lead to a
weakening of the trade winds, and consequentlySea, and positive (negative) anomalies in the

Labrador region. These changes, which might be to a reduction in heat flux and a warming in its
north-central part. These changes in the tradeENSO induced over the T850 anomalies (Fig. 9b),

are found significant in the subtropics, the winds can be related to a weakening of the low-

Fig. 9. (a) Composite analysis for the SIC anomalies according the ENSO phases. Differences between the warm
and cold phase are computed and tested for statistical significance by an univariate ANOVA test. The shaded regions
indicated where the difference is significant at 95% level. (b) Composite analysis for the T850 anomalies as in (a).
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pressure center situated over the southeast United Fig. 10a we have represented the ENSO+ skill at
different leads for those regions, and in Fig. 10bStates (Klein et al., 1999), connected to the Pacific

North American pattern (Wallace and Gutzler, we show the ENSO− case. We focus on the
behaviour for lead times above 9 months. The1981).

As ENSO influences both predictor and pre- improvement of the skill of forecast under
ENSO+ influence compared with the skill fordictand fields, it seems reasonable to assess the

changes that the warm (cold) phase of ENSO ENSO− conditions is more significant in the
Labrador and south Greenland region, and mod-could induce on the forecasts. To compute an

ENSO+ skill we have taken into account the erate in the Iberian region. In the case of the
Great Lakes region, forecasts issued underforecasts issued at months where the predictor

field was already under the influence of a warm ENSO− conditions are more succesful.
Lastly, we have also separated the forecastevent. We have likewise proceeded to produce an

ENSO− skill; in order to average to the same according to the NAO phase as determined by
the sign of the NAO index. The skill for thenumber of forecasts in both cases, the ENSO+

events in the nineties have been excluded. The NAO+ and the NAO− phases are very similar
and for this reason not shown. High values of thepattern of the ENSO+ and ENSO− skill shows

similar characteristics in the subtropics, where skill are confined to the region to the east of
Bermuda and to the west Mediterranean.the higher values are found. To highlight the

differences we have built an averaged skill over
four regions where the differences between
the ENSO+ and the ENSO− cases are most 6. Summary and conclusions
important. These are the Labrador sea region
(65°W–55°W, 45°N–55°N), an Iberian region We have presented here the results of some

empirical forecasts of anomalies in the North(10°W–10°E, 35°N–45°N), the south Greenland
region (50°W-30°W, 60°N–70°N) and the Great Atlantic basin. Three predictand fields are used:

SST, T850 and SLP anomalies. The predictor fieldLakes region (90°W–80°W, 35°N–50°N). In

Fig. 10. (a) Dependence of the skill for the forecasts issued during ENSO+ conditions on the forecast lead. The
skill has been averaged over the four regions explained in the text: solid line for the Labrador region, long short
dash for the Iberian region, dot dot dash for south of Greenland and dots for the Great Lakes. Horizontal axis is
labelled in months. (b) As in (a) but for ENSO− conditions.
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is the SIC anomalies over the GIN Seas, the by introducing uncoupled signals in one field, the
variability associated with timescales shorter thanLabrador Sea and the Davis Strait regions. The

statistical technique used is based on the SVD of 8 months has been removed from predictor and
predictand by filtering. This means that whenthe lagged cross-covariance matrix between pre-

dictor and predictand fields. The lag is equal to comparing with other empirical seasonal forecasts
performed on anomalies of seasonal mean values,the forecast lead. This technique has already been

used in a previous paper by SánchezGómez et al. the level of skill of our forecasts needs to be
rescaled. This can be done by applying a correction(2001). In that paper, T850 anomalies in the same

domain (the North Atlantic) were forecast using factor, roughly estimated as 0.85, that is the aver-
aged ratio of the filtered to the original variance.SST anomalies as predictor field. The novelty of

the present work lies mainly in the choice of the Further analysis performed on predictor and
predictand datasets points to a possible source ofpredictor field, the SIC anomalies, from the

HadISST record. This predictor field allows us to important discrepancy between the oceanic and
atmospheric fields. In the oceanic fields, the periodfocus on longer timescales of variability. It could

be questionable, though, whether such a spatially of the GSA stands out clearly, while this discrep-
ancy is not as easily detected in the others. Thisconfined predictor field can be an adequate pre-

dictor for a large-scale region such as the North fact will be of some relevance for the forecasts.
In the case of the SST forecasts, the skill isAtlantic. The experiments discussed here have

shown that the predictability of the SLP and SST reasonably high in the adjacent regions to the sea
ice, as in the GIN Seas. There is also someis reduced to the region of sea ice interaction.

However, the sea ice is a succesful predictor of the acceptable forecast skill in the eastern part of the
subtropical gyre. The highest levels of skill appearsubtropical air temperature anomalies.

As for the record length, the use of reanalyzed in the T850 forecasts. This was also the variable
best predicted with the SST anomalies indata for both predictor and predictand fields

allows forecasts to be issued for at least three SánchezGómez et al. (2001). The source of this
forecast skill seems to be the large-scale telecon-decades. The forecasts have been formulated under

a variety of climatic situations. nection pattern in Fig. 11, which represents the 12
months lagged correlation between the T850Preliminary spectral analysis shows important

discrepancies in the high-frequency variability anomalies and the first PC of sea ice (Fig. 3a).
This pattern shows those regions where the pre-(timescales below 8 months) of the SIC and the

atmospheric (air temperature) field. Because we dictor is most related to the predictand field, and
therefore where the forecast is likely to be moreare interested in forecasts at lead times around

one year, and are aware of the risks of missfitting succesful. Notice the resemblance with the pattern

Fig. 11. Twelve-month lagged correlation between the T850 anomalies and the first PC of sea ice ( leading). Values
of correlation above 0.3 are found to be significant at the 0.95% confidence level according to a t-test.
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of the skill shown in Fig. 6b. Inspection of Fig. 11 phase of the NAO, in contrast to the results for
the GSA and ENSO. This can be partiallyshows positive (negative) anomalies in the subtrop-
explained by the purely atmospheric and dynam-ical Atlantic, especially in the region centered east
ical nature of the NAO. However, the lack of skillof Bermuda, and over the Iberian Peninsula and
in the forecasts of the eighties would also explainthe Mediterranean region as well as negative
it. Unfortunately, due to its decadal timescale, we(positive) anomalies over northeastern Canada
have to take into account the three forecastand Greenland when the sea ice PC is positive
decades to estimate NAO influence.(negative). Note that the pattern in Fig. 11 also

The analyses have shown the existence of apresents a high resemblance to that associated
decadal dependence of the skill. This can be relatedwith the NAO (Deser et al., 2000; Thompson et al.,
to the fact that the training sample used to forecast2000). The warming over the eastern Greenland
the eighties was conditioned by a situation (theis related to reduced SIC over that region, and
GSA) that was absent in the forecast period. Thethe cooling over the Labrador/Davis Strait is
change from one state to the other is statisticallyrelated to the increase of SIC.
unpredictable, even if we accept the recurrence ofConcerning the skill of the forecasts of SLP
the Salinity Anomalies episodes. The duration ofanomalies, only over Greenland does it attain
the GSA event imposes requirements in terms ofvalues above 0.5, for leads up to 15 months.
training sample length that are unattainable withTherefore, it is inferred that the predictive skill
the available observations.from this empirical model at forecasting atmo-

In the previous work by SánchezGómez et al.spheric anomalies, using SIC anomalies as pre-
(2001), T850 anomalies were forecast using Northdictor field, lies mainly in an ability to capture
Atlantic SST anomalies as predictor and the samethe thermodynamical part of the air–sea ice
forecast scheme. The same subtropical structureinteractions.
was responsible there for the highest levels of skillComposites analysis shows that the warm (cold)
in both studies. Nevertheless, the use of SICphase of ENSO modifies the predictor field (T850)
anomalies as predictor has enlarged the regionby producing a decrease (increase) of SIC in the
where the forecasts beat persistence, comparedGIN Sea and increase (decrease) of SIC over the
with the forecasts issued with SST. The decadalLabrador Sea. The warmings or coolings in the
dependence of the skill (also evident in the referredsubtropical Atlantic are the strongest part of
work), can be easily connected in this study withthe air temperature response to ENSO. During
the GSA and the great differences in the air–seathe warm phase of ENSO, and at the lead times
interaction between the GSA period and the lastof interest, the skill substantially improves in the
part of the records.Labrador and South Greenland regions, and to a

lesser extent around Iberia. On the other hand,

the forecasts issued for the Great Lakes under 7. Acknowledgements
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