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Abstract. Geophysical multivariate data fields are frequently analyzed using linear inverse 
modelling. A cyclostationary dependence, whether annual, semiannual or diurnal, is 
usually present in these data. The dependence can be introduced in the inverse linear 
model in two different ways, known as the "fixed phase" and the "phase smoothed" 
approaches. When either of them is set to the analysis of real data, the interpretation of 
some of the diagnostics parameters is not straightforward. From statistical considerations, 
both methods are expected to perform rather loosely at some points. It is then hard to 
decide if those values of the parameters correspond to characteristics present in the 
observed field or to failures of the method. To settle this matter, we proceed in this work 
to analyze the same synthetic geophysical fields with both methods. The fields consist 
basically of geophysical waves of known frequency, upon which a cyclostationary 
dependence is imposed, that are embedded in noise. Different fields were generated by 
changing the phase of the cyclostationary dependence and the characteristics of the noise, 
and analyzed using both methods . Through this systematic procedure we assess the real 
meaning of the diagnostic parameters. Because the true signals and phase of the 
cyclostationary dependence are known, the performances of both approaches can be 
compared. 

1. Introduction 

Despite its simplicity and limitations, linear inverse mod- 
elling has proved to be very fruitful in the analysis of geo- 
physical data (see, for instance, Tarantola [1987]). Many 
of the data fields analyzed present a dependence on a fre- 
quency that can be traced back to a cycle in the mean feed- 
back (annual, semiannual or diurnal). This cyclostationary 
dependence is commonly removed by a filter, applied to the 
time series previous to the analysis. This is quite right if the 
analysis is focused in a range of frequencies that does not 
encompass the cyclic one. Nevertheless this procedure has 
several important drawbacks. The variability explained by 
the filtered field, for instance, is considerably smaller that 
the one present in the raw data. Additionally, the filtering 
can change the timing of some bigger fluctuations ("events") 
present in the data; this can be of importance if the param- 
eters determined through the linear inverse modelling are 
intended as predictors. 

On the other hand, the cyclostationarity can be taken into 
the linear inverse modelling. This can be done in two differ- 
ent ways, known as "fixed phase" and "phase smoothed". 
In the fixed phase approach, which is recommended in most 
classic statistical textbooks, the time series must be divided 
into subseries, each of them presenting the same phase, that 
is, the same stage of the cyclostationary dependence (i.e. if 
the cycle is the seasonal dependence and the observations 
are monthly, we will divide our time series in 12 subseries, 
one with all the Januaries, another with the Marches,..etc). 
Then the linear modelling can proceed on each subseries. 
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If m is the length of the original time series, and Ta is the 
number of observations in time required for one cycle (in 
the example above, 12), the partition of the series accord- 
ing to the value of the phase will leave us with Ta subseries 
of length (m/T•). This points to the main problem of the 
phase fixed approach: to be feasible, m, the original time 
series length, must be considerably greater than T•. Even 
if this is true, the error in the estimation of the parame- 
ters from these subseries will be always greater than if the 
parameters were estimated with all the length of the orig- 
inal series. If several signals with different cyclostationary 
dependence are present in the data, these errors in the esti- 
mation would possibly lead to a failure at separating them. 

Another possible way of dealing with the cyclostationary 
dependence is to introduce the cyclic dependence into the 
parameters of the model, usually by expanding them into 
harmonics of the cyclic frequency. Because the expansion 
is truncated after a few terms, this procedure is known as 
the phase smoothed method. The big advantage of this 
method is that the parameters are estimated from the entire 
length of the time series. Thus, if the number of terms kept 
in the expansion is, for instance, three, we will need only 
three estimators to describe the cyclic evolution of each of 
the parameters of the model, while T• estimators would be 
necessary when using the phase fixed method. Against this, 
the method presents an uncertainty concerning the phase 
of the cyclic evolution. That is, we would not know if the 
maximum value in the seasonal evolution of the large-scale 
pattern of variability corresponds to January or to April, 
for instance. 

Both ways of modelling a cyclostationary dependence have 
been introduced into a linear autoregressive model for the 
evolution in time of the multivariate fields: the principal 
oscillation pattern (POP)analysis [Hasselmann, 1988]. Cy- 
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clostationary POP with the phase fixed approach have been 
used to analyze observed sea surface temperature (SST) 
in an equatorial band of the Indo-Pacific basin [Storch et 
al., 1993]. The procedure applied in Blumenthal [1991] fol- 
lows basically this approach, although with some phase- 
smoothed touch: the data are sampled every 3 months, and 
this can help to avoid some of the pitfalls of the fixed phase 
method. Cyclostationary POP with the phase smoothed ap- 
proach were used to analyze winds and sea surface tempera- 
ture (SST) data in the tropical band of the Indo-Pacific [Or- 
tizBevid, 1993]. All these works show how both approaches 
can be made operative to introduce the seasonality into the 
POP scheme. But on the basis of these applications, we 
cannot decide how well each method is performing. In the 
case of the ENSO (El Nifio- The Southern Oscillation) sim- 
ulated variability [Blumenthal ,1991] we are limited by the 
simplicity of the model. And in the other cases, real data 
are too complex to give any clear answer. Then, as a conse- 
quence of these applications, we will end with new questions 
in addition to the old ones, as for instance the meaning of 
some values of the diagnostic parameters. 

To answer them, several simulations of geophysical fields 
were analyzed with both techniques. The procedure fol- 
lowed to build the synthetic fields is described in section 3 
of this paper. In section 2, after a brief account of the linear 
model used (the POP), we describe both methods of intro- 
ducing seasonality into the linear inverese modehug. The 
output yielded by each approach is analyzed and compared 
in section 4. Because we know the characteristics of the sig- 
nals present in these fields, we can assess the performance of 
each method and the meaning of the diagnostic parameters 
becomes clear. 

2. Introduction of the Seasonality Into the 
Linear Model 

Let (zi3, i = 1,...,m; j = 1,...,n) be a set of m x n 
observations of the value of one or several physical variables 
(for instance sea level pressure or sea surface temperature) 
in n different grid points, at m different instants of time. 
We will use here i = 1,..., m to denote the time variability 
while j = 1,..., n will index the spatial dependence. For 
each instant of time j, the 2i$ values for j = 1,..., n, can be 
viewed as one realization of the state vector • (an array of 
one column and p rows). •T will denote the transposed of 
a vector. In a statistical description, the data field could be 
characterized by its mean value vector } and its covariance 
matrix •, whose elements are respectively given by 

_ _ 
i=l 

= y] - - (2) ß 

m 
i=1 

If the complexity of the system is great, as usually hap- 
pens with geophysical observations, a reduction of the num- 
ber of degrees of freedom is customary. Such reduction can 
be obtained through expansion of the variables of the sys- 
tem (the data at each point of the grid) in terms of some 
functions, followed by truncation. Both, a basis for the 
expansion and a criterion for the truncation can be ob- 
tained directely from the statistics of the field. The basis are 
the eigenvectors •k of the covariance matrix •, also known 
as empirical orthogonal functions (EOF), and the criterion 

is the amount of variance explained by the corresponding 
(real) eigenvector. By keeping only 1 << n terms in the 
expansion, we are left with a filtered field: 

= (3) 
k=l 

The time dependence in the original field is confined to the 
coefficients rik in the expansion, known as principal compo- 
nents iPC) of the field. When Fourier analyzed, they usually 
contain several (low) frequencies. The statistical technique 
known as POP analysis aims at separating these frequencies 
through the determination of a new spatial basis. To do this 
in the simplest way, we assume that the system evolution 
can be represented by an autoregressive first-order process 
(AR(1)). That is, the •'i coefficients satisfy the finite differ- 
ence equation 

•i+• --•i = z•t(A•'i q- •i) (4) 

where A is the dynamical matrix of the AR(1) process. The 
above expression can alternatively be written as 

•,+1 -- B•i + •i (5) 

using the forward matrix B - (I + •A) where I is the 
identity matrix. The stochastic characteristics of the field 
are taken care of by the term •i, representing a white noise. 
Matrix B can be estimated from the data through an LSE 
minimization procedure. The standard way in the POP 
literature is based in second moment statistics and yields 
B -- C1 C• 1 where C1 and C0 are the data covariance ma- 
trices at lags 1 and 0 respectively. 

Solution of the deterministic part of (4) can be expressed 
•s 

l 

•i -- Cke "• •k, Ati -- ti -- t0, i = 1,..., m; (6) 

where the characteristic exponents • can be obtained from 
the A• eigenwlues of the matrix B' • = ln(A•), and where 
g• are the corresponding eigenvectors. Because B is non- 
symmetric, both eigenwlues and eigenvectors will in general 
be complex. Also, due to the assumption of stationarity, 
abs(A•) must be smaHer than 1, that is, • is negative and 
the oscillation is always damped. If the number of complex 
eigenvalues is li, (6) can now be written as: 

l, l 

ri -- • c•eU•t'(Re(g•) +,Im(5•)) + • eke • 
(7) 

If we denote 7k - Re(gk) and •k - Im(gk), it is easy to 
work out that for each pair of complex conjugated eigenval- 
ues, gk and gk+•, and we will have a pair of real patterns 
• - Re(•k) and •k = Im(ak), associated to a kequency 
•k, a period Tk and a damping factor 7k. These are the 
POP of the system at that kequency. For each POP, (7) 
prescribes the following evolution in time 

• T k/4 • T k/4 • T k/4 • 
pk •-qk > -pk • qk. (8) 

The evolution in time for each pair can also be obtained 
empirically kom the principal components. If we build a 
matrix W with elements (•5 -•j, •j+• - •j, j- 2k- 
1, k - 1,1i) and • = Re(gk), k = li+•,l, then •i - W•i 
and the empirical time coefficients are given by 

(s) 8i 
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Comparison between the theoretical evolution of the pair 
of POP, given by (8), and that estimated by (9), win provide 
a measure of the suitability of the POP scheme for describ- 
ing the evolution in time of the field {zij }. The damping 
exponents, -'Yk, are other indicators of the "quality" of a 
pair of POP. After some time 5T the most probable pat- 
terns to be observed are those corresponding to the POP 
with smaller damping exponents. 

If we know that the physical system that produces the 
data field { z O' } is under a cyclostationary feedback of period 
T,, it is reasonable to asume that the data also will have 
a dependence on the same period, that is, zi+•'•,j will be 
related in a nonstochastic way to zi,3. This dependence in 
time will go over into the •, PC of the field, and therefore 
the dynamical matrix that describes the evolution of these 
coefficients will be periodic of period T,' 

A(k+•,•) -- A•. (10) 

In the POP fixed phase approach the cyclostationarity is 
made explicit by writing i = (iy - 1)T, + n, where iy indexes 
the order of the cycles T• contained in i, and rewriting (4) 
as 

r(iy+l) -- riy ---- At(A•riu + giu) (11) 
where n denotes the phase of the cycle and At = T•. Be- 
cause the most common cyclostationary dependence in geo- 
physical fields is the annual one, we will refer always to this 
case as an example. In our example n will index the season 
of the year if the data are seasonal or will be the monthly 
index if they are monthly data. The system described by 
(4) is statistically nonstationary, but a stationary statistics 
can be recovered by fixing the value of n. If this value is set 
to, for instance, n•, and for values of • that lie at lag T•, 
the b3k coefficients of (5) will not be dependent on time, and 
we will have an AR(1) relationship. Consequently, instead 
of only one, as in the stationary case, we will have Ta for- 
ward matrices B • - (I + AtA•). In our seasonal example 
that means that we will have a forward matrix B 1 that will 
characterize the transition from one January to the next, 
another matrix B 2 for the transition between Aprils, etc. 
The eigenvectors of each of these matrices will satisfy the 
relationship 

• •a• (12) B• = 

This set of T• different eigenvalues and eigenvectors in- 
dexed by n can be introduced to give an equivalent of (7) 

li 

k=l 

l 

(13) 
k=liq-1 

but the POP evolution scheme given by (8) will hold only if 
we can write wk _= w•. Blumenthal [1991] gives a proof 
of such identity. Then for each frequency w• there will 
be T, pairs of real seasonal patterns • = Re(g•) and 
• = Im(•), which will give the cyclostationary evolution 
of the • and • associated to the wk frequency. If the • is 
observed at season nl, the evolution in time prescribed by 
the POP evolution scheme will estabhsh 

t• 1 Tk/4 Tl•/4 _, -, t• 2 _, t• 3 /)4 .• t• 4 p• • -q• ) -p• qk (14) 

where ni + •'k/4 = nj -[-nTa. 

Blumenthal's [1991] proof requires the definition of sea- 
sonal transition matrix between phase stages n and n + 1, 
Mn• 

•+1 = M• + •. (15) 
The cyclostationarity implies iy + nn -- (iy + 1) + n and 

M •+• -- M •. It is then easy to show that matrix B •, which 
forwards the state of the system at one season to the same 
season the following year, can be written as a product of 
the seasonal transition matrices, 

B • = M(•+•-i)M (•+•-2) .. ß M •. (16) 

If transition matrix M (•+•) is then applied to both sides 
of the eigenvalue equation (12) 

M(•+•)B• = g(n+l)Mn• - •M(•+•)• (17) 

which proves that the eigenvMues of matrix B (•+1) and its 
eigenvectors can be obt•ned as 

g?+l) = Mng•. (19) 
Because all the B • share the same eigenvalues, the phase 

dependence of the POP must be inferred either from the 
eigenectors • [Storch et al, 1993] or from the eigenvalues 
of the transition matrices M • [Blumenthal, 1991]. 

If n is chosen as the initial state season, the normalization 

constant n• n+l) 
•+1) II M• = II (20) 

can spot the stage of the cycle of a season (n + 1) referred 
to the n season. 

Introducing the seasonality into our model yields a more 
realistic evolution scheme. We hope that this relatively mi- 
nor comple•ty (the model is always linear), will a•ows us 
to make better predictions. There is in particular one case 
when the cyclostationary POP gives a meaningful descrip- 
tion of the evolution of a system: when T• the period associ- 
ated to the k pair of POP cont•ns an exact number of times 
the cyclostationary period T•. For instance, if w• = 0.Sw• 
and we start by observing the pattern • at season 1, pattern 
-• will be observed at season 3, pattern -• will appear 
ag•n at season 1, and pattern • at season 3. We will say 
that this p•r of POP is locked to the seasonal cycle, and we 
will expect the values of the damping factor to reflect this 
fact. 

In the POP phase smoothed method the cyclostationary 
dependence of matrix A could be modelled as 

A(t) = A0 + A1COS(•at) + A2sin(w•t) (21) 

w• = 2•/T• being the frequency of the cyclic feedback, that 
it is assumed to be known "a priori". As in the stationary 
case, Bj• has to be determined from the data using a LSE 
fit between the time series and the modelled matrix. 

The theory of •near systems of Floquet (see the appendix) 
allow us to represent the solution to (4) as 

l 

•i -- • c•e•t•, Ati = ti -- t0, i = 1,..., m; (22) 
k=l 

where the • are no longer obtMned from the •, the eigen- 
values of the forward matrix B, but from those of a char- 
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acteristic matrix •. Similarly, the gk,no longer constant in 
time but periodic with period T•, can be obtained from a 
fundamental matrix Y 

Filtering 

= = to 

As in the stationary case, Ak ,the eigenvalues of the char- 
acteristic matrix will in general be complex. For each pair of 
complex conjugated eigenvalues, A• and A•+i, we will have 
a pair of real patterns • = Re(•) and • = Im(•), asso- 
ciated to a frequency w• and a period T•. These will be the 
POP of the system at that frequency and will satisfy (14). 
The stationary part of these patterns can be separated by 
averaging to the seasonal cycle. 

T• 
1 

P•, = • •Pi•. (24) 
i=1 

For some seasons the stationary pattern will be reinforced, 
while for others it will be weakened. During these last sea- 
sons, transition from pattern I to pattern-2 will take place 
preferenti•ly. The POP evolution scheme will persist, but 
the steadiness of the evolution will be affected by the sea- 
son• modulation in the strentgh of the pattern. The proce- 
dure followed in the phase smoothed analyses is summarized 
in Figure 1. 

3. Determination of the Parameters of the 

Linear Cyclostationary Model 

The dynamical matrices used in the POP phase fixed 
method are determined through an LSE fit. This can be 
done following the Yule-Walker procedure as in the station- 

_•T 
ary case: both members of (11) are multiplied by riy and 
averaged to the length of the time series. For each • we will 
obtain an expression of the form 

C• = (I + TaA '•) C• (25) 

where C• {< riy+•riy >} and C0 {< n • •n 
where (•) indicates •ver•ging to the time, •nd from which 
the values of B • c•n be derived. 

Similarly, the three matrices used in the POP phase smoo- 
thed method can be determined from the three equations 
obtMned by multiplying the expresion (4), with A given by 
(II.21), by ([•), by (coS(wai)•) and by (sin(wai)[•). By 
averaging to the time (<>), one obt•ns a system of three 
linear equations 

C1 = (I + (at)Ao)Co + (at)AiCoc + (at)A2Cos (26) 

Clc = (I+ (at)A0) C0c+(at)A1n0c+(at)A2n0cs (27) 
Cls = (I + (ai)Ao) Cos + (at)A1Do• + (A/)A2Do• (28) 

where 

At = 1 

Co = >} 

Cls = {< 7i+lsin(w,•i)•" >} 
C0c -- {< 7iCOS(COai)•'i T > } 
Cos = {< 7isin(w•i)•" >} 
Do• = { < 7i(COS(COai))2•i T > } 
Dos = {< •i(sin(w•i))27• >} 
D0cs = { < 7icos(w,•i)sin(w,•i)Y• > }. 
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Patterns 
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to one Period with 
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Cyclostat. 

Patterns 

Cyclostationary 
Matrix 

Matrix of 
Fundmental 

Solutions 
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Stationary Cyclostat. 
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Figure 1. Flow diagram of the Cyclostationary POP pro- 
cedure 

From the above equations, the values of A0, A1, and A2 
can be derived. 

To determine A0, A1 and A2 one can also use standard 
leastsquares routines from NAG, IMSL or NR. Results using 
this last procedure do not differ much of the ones obtained 
with the Yule-Walker method. 

4. Description of the Synthetic Data Fields 

In the preceding section, we have seen that both meth- 
ods rely on some 'ad hoc' assumptions. In this section we 
proceed to use both of them to analyze the same synthetic 
datasets. The points we were most interested in testing were 
the following: (1) The ability to identify the same POP at 

nj different seasonal stages (that is, test if w2' = w• ). This 
can be better assessed if more than one signal is present 
in the data.(2) The ability to identify the phase of the sea- 
sonal dependence (that is, if the maximum of the variability 
took place in January or in May). Several fields with the 
same signals and different values of the phase had to be an- 
alyzed. (3) The accuracy in the determination of the waves 
characteristics (frequency, spatial patterns) 

An obvious choice for the synthetic signals would have 
been a multivariate AR(1) proccess. It is relatively easy to 
generate an AR(1) field where several oscillations of dif- 
ferent frequencies are present. But such features as the 
ratio between these frequencies, propagating or standing 
characteristics of the oscillation, and damping or locking 
to the seasonal cycle are hard to control in such processes. 
In our analysis it was most important to know beforehand 
these features, and therefore another procedure was followed 
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Table 1. Model Parameters, Typical Values and Description 

Parameter Typical value Description 

H 4 km 

c 200 ms -1 

a- V/(c/2/3) 2085 km 
r -- a/c I hour 

5t 1/4 hour 

/3 2.3 X 10 --11 --1 --1 
m s 

atmosphere height 

horizontal velocity scale 

Rossby radius 

characteristic time scale 

time step of the simulation 

variation of the Coriolis 

parameter f with latitude 

to generate the fields. The synthetic fields were obtained 
by adding stochastic noise to some deterministic signals 
(waves). 

The deterministic signals present in the different simula- 
tions are always the same. The atmospheric variability is 
represented by the fluctuations of the zonal velocity of a 
barotropic model. In such a model, the atmosphere is rep- 
resented by a single layer of height H [Matsuno, 1966], in 
a band that goes from 40 ø S to 40 ø N. The Coriolis factor 
is assumed f - fly, where y is the latitudinal coordinate. 
Values of the parameters of this model are detailed in Table 
1. The waves included in our model correspond to (1) an 
eastward gravity wave of n - 1, k - 1, and period T1 - 12 
hours and (2) an eastward propagating gravity wave, with 
n = 0, k - 0.5, and period Tg - 20 hours. The fluctua- 
tions of the zonal velocity u are obtained directly from the 
expresions 

tl = (•nl -- k)½nq-1 -•- n(w,• + k)½n-1 (29) 

where •p,• -- e -(1/2)y2 Hn(y) and H•(u ) are the Hermite poly- 
nomials of order n and the frequency w• is the solution of 
the cubic equation 

w• + kw• • = 2n + 1. (30) 

The selected wave frequencies are of the same order of 
magnitude but nevertheless well separated, and their spatial 
patterns, represented in Figure 3a (k=0.5) and in Figure 3b 
(k=l), are clearly distinct. 

To impose the cyclostationary dependence on this field we 
look to the seasonal dependence of observed atmospheric 
fields. The plot in Figure 2 represents the power spectrum 
of an atmospheric field, the monthly observations of the 
zonal wind in the tropical band of the Pacific basin [Barnett, 
(1984)]. In this case the cycle is the real seasonal cycle. 
If one filters to get rid of the cyclostationary dependence, 
23.5% of the field variance will be lost. 

Many atmospheric fields power spectra will have the "red 
noise" look of Figure 2. There will be peaks at locations cor- 
responding to the characteristic low frequencies in addition 
to more than one peak in the neigbourhood of the cycle's 
frequency (w= = 0.523 month -1 in Figure 2). To simulate 
this feature in our synthetic field, the cyclostationary de- 
pendence must modulate only part of the signal. Such a 
field (thereinafter referred to as the benchmark field) could 
be described by' 

1 (31) • )cos(w•i + Oj) + (ui• + uo) + nij 

0 

where u 0 is the value of the gravity wave of n - 0 and 
k - 0.5, and u 0 the value of the gravity wave of n - 1 and 
k = 1 at the j point of the grid and the i instant of time; 
n 0 represents the contribution of the noise to the value of 
the field at this point and instant of time. Notice that the 
noise is simply added to the deterministic signal (instead 
of contributing to the derivative of the field, as it should 
be in an AR(1) process). The cyclostationary dependence 
appears as a factor that modulates only a part of the signals; 
03 represents the phase of the cyclostationary dependence 
at each point j of the grid. In the present simulation Ta = 4 
hours. The time step of the simulation was chosen for 1/4 
of 1 hour, and the time series consist of m = 432 points or 
27 feedback cycles. With this value of the cyclostationary 
dependence, the signal with a period of 12 hours will be 
locked to the cycle imposed. 

The different simulations are obtained by changing the 
characteristics and the intensity of the stochastic noise 
added to the signal. We will use basically a white noise 
that consists of fluctuations that are uncorrelated in time 

and space and with an uniform distribution in the frequency 
domain. In some of the simulations, the noise added to 
the deterministic signal is red, obtained from the white one 
through a recursive three-point moving average. In all the 
cases analyzed the amount and characteristics of the noise 
are such that the signals cannot be identified visually (look, 

25- 

20- 

15- 

10- 

5- 

O- • 
o 16 52 48 64 80 96 112 128 

Period (months) 

Figure 2. Example of observed atmospheric power spec- 
trum. We show here the spatial average (to all grid points) 
of the power spectrum of zonal wind data in the Indopacific 
region [Barnett, 1984] 
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4o 

2O 

-2o 

-40 

4O 

2O 

-2O 

b 

Figure 3. Longitude-latitude snapshot at t- 1 of the zonal velocity component of (a) the gravity wave 
with n - 0,k - 0.5, T - 20 hours; (b) the gravity wave with n - 1, k - 1., T- 12 hours; and (c) the 
whole simplified field. The time step unit (t.u.) is 1/4 hour. 

for instance, at Figure 3c where we show a snapshot of one 
of the fields analyzed). 

The state of our atmosphere will be characterized by the 
values of u given by (31) and the noise n 0 is assumed to 
be white, of variance of er = 0.4. Because we are used to 
thinking in terms of the seasonal cycle of 12 months, we 
will also refer to our 4-hour cycle in this way. Therefore the 
first hour in the cycle will be called season 1; the second, 
season 2; etc. Notice that because of the time step used 
for the sampling, in one cycle season 1 will be represented 
by the label 1, season 2 by the label 5, and so on. If, for 
instance, the value of the phase Oj = 0 , because of the 
cyclostationary dependence imposed, we expect the signals 
in our field to be better observed in season 1 and season 2, 
because in seasons 3 and 4 our field will contain less signal. 

Initially, the number of degrees of freedom of our field 
is the number of grid points, that is n = 289. After an 

expansion in the EOF of the field, only four terms were 
kept, which account for a 75% of the variance of the field. 
The time dependence will go into the •, known as PC. 

A simphfied version of our benchmark field is obtained by 
dropping in (31) the term that is not seasonally dependent. 
The value of this simplified field would be given by: 

1 )COS(Wai -Jr-0.•) -Jr- nij (32) uo - (uiø + %' ß 
Notice that in this case, if we assume for simplicity that 

the phase Oj = 0, the field for seasons 2 and 4 will contain 
almost no signal. In the next section, much attention will be 
paid to the analysis of this simplified field. Our benchmark 
field is quite simple but the interpretation of some values of 
its diagnostic parameters is not immediate. The interpreta- 
tion of the ones obtained from the simplified field is always 
obvious. Therefore in the next sections the analyses of the 
simplified field will precede the ones of the benchmark field. 
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Figure 4. Simplified field with 0 - 0. Results of the fixed 
phase analysis. The figure shows the dependence of the real 
part of the characteristic exponent 7• (solid line) and 73 
(dashed line) on the stages of the seasonal cycle. The length 
of the seasonal cycle is 4 hours, and the time step 1/4 hour. 
Notice how the jumps are located at the nodes (season 2 
and 4) of the cyclostationary modulation. The straight lines 
represent the estimation of the same parameters by the phase 
smoothed method. Units for the solid lines are on the left, 
those for the dashed ones are on the right. 

5. Intercomparison of the Cyclostationary 
Analyses 

5.1. Ability to Identify the Same POP at Different 
Seasonal Stages 

In first place, we applied the fixed phase method to the 
simplified field. The four time series of the first four PCs 

were separated into 16 subseries according to the 16 differ- 
ent stages of the cycle sampled. Each of them consists of 
27 data maps. The 16 subseries were analyzed with the sta- 
tionary POP model. From each of these subseries, a matrix 
B • was identified. The number of complex eigenvalues and 
therefore the number of pairs of POP obtained for each of 
the matrices varied from two to four. This was not incon- 

venient because for each matrix there was always one pair 
associated with the lower frequency (surprisingly, because 
the other is better sampled), and it was easy to establish a 
correspondence between the second pair of POP identified 
at some stages of the cycle and the two real POP appearing 
at other stages. For this analysis an interpretation is easily 
obtained from the real part of the characteristic exponent 
at each season, -/•. In Figure 4 we have represented the 
evolution of the -/• and -/• of our simplified field with n, 
the stage of the cycle. The seasonal evolution of the first 
pattern of the pair 1/2 is plotted in Figure 5. Each seasonal 
pattern represented is the eigenvector corresponding to the 
first pair of complex eigenvalues of the matrices identified at 
the first, second, third and fourth hours of the cycle, which 
here are referred to as season 1, 2, 3, and 4, respectively. 

Against expectations, there is a dependence of the real 
part of the 7• on n, noticeable in Figure 4 as a jump at 
the first observation of season 2 and season 4. This means 

that although (16) is of course true, it does not hold when 
matrix B • in the left-hand side is estimated by (11) while 
in the right hand we have the transition matrices M • esti- 
mated using (16). When B • is estimated by (11), only the 
signal/noise ratio at the stage n determines the errors; when 
estimated by the right-hand side of (16) the signal/noise ra- 

4O 

2O 

0 

-2O 

-4O 
0 90 180 270 360 

o o 

40 •[11 Ilil;;;;111;[111ytl!• '1 40 
I• l •._3•,: 1•',.:.,,, •;K",,:..P • 

.... 
• •"- - .... -, '•x • t- 

-20 -20 
%11' 

-40 ••'•' • ,•, • [•li•l;, ,•1 -40 
0 90 180 270 360 0 90 180 27o 56O 

Figure 5. Simplified field. Results of the fixed phase analysis. Longitude-latitude representation of 
pattern 1 of the pair of POP 1/2. Beginning top left and clockwise, season 1, season 2, season 3, and 
season 4. 
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Figure 6. Simplified field. Results of the fixed phase analysis. Longitude-latitude representation of 
pattern 3 of the pair of POP 3/zt. Beginning top left and clockwise, season 1, season 2, season 3, and 
season zt. Notice how the signals are not well separated in season 3, and compare with the results given 
by the phase smoothed method, represented in Figure 8. 

rios of all stages present in one cycle are involved. In this 
way the 7• parameters, obtained from the eigenvalues of 
the forward matrices B" of the phase fixed method, allow 
for the identification of the stage of the cycle. This identi- 
fication could be done also through the eigenvalues of the 
transition matrices M" as by Blumenthal [1991]. On the 
other hand, if we look at Figure 5, it is evident that this 
method fails at separating the signals. The spatial pattern 
represented corresponds to the wave with n = 0, of Figure 
3a. Its "seasonal" evolution can be easily spotted at season 
1 and 3, but at seasons 2 and 4 the pattern resembles more 
the spatial structure of the wave with n = 1 , as represented 
in Figure 3b. In Figure 6 we have represented the seasonal 
evolution of the second pair of POP: we can see that at 
seasons 1 and 3, the pattern identified correspond to the 
wave with n = 1, of Figure 3b, while at seasons 2 and 4 the 
(noisy) pattern is rather similar to the one of the wave with 
n = 0. What happens here is not merely the replacement 
of one spatial pattern by the other, because the estimation 
of the frequencies is wrong also, as evidenced in Figure 7. 
The asymmetries in the "jumps" of Figure 4 can now be 
understood as a diagnostic of the intermixing of both POP 
at some seasons. This is a characteristic of the analysis with 
the fixed phase method confirmed in all our simulations. 

Also in Figure 7 it can be seen how the phase smoothed 
analysis succeeds at separating the frequencies of the sig- 
nals, as expected from theoretical considerations. Figure 8, 
where the seasonal evolution of the first POP of the pair 
3/4 is represented, shows that this approach succeeds also 

at separating the spatial patterns (by contrast to Figures 5 
and 6) The evolution of the pair 1/2 (not shown) represents 
well the other wave, with n=0. and /;=.5. The similarity 
between Figure 9, where the stationary parts of the cyclo- 
stationary patterns identified are plotted, and Figures 3a 
and 3b, is quite satisfactory. But as the analyzed field (sim- 
plified case) has no stationary term, we must realize that 
the rate of the stationary/cyclostationary patterns can be 
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l?igure 7. Simplified field. Estimation of the waves' fre- 
quencies given by both cyclostationary POP methods at dif- 
ferent stages of the seasonal cycle. The straight lines with 
diamonds represent the estimation with the phase smoothed 
method. Below, solid and dashed lines give the estimation of 
the fixed phase procedure. The values used in the simulation 
were 1.28 for the POP 3/zt and 2.11 for the POP 1/2. The 
x axis extends to one cycle of the forcing (16 time steps). 
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Figure 8. Simplified field. Results of the phase smoothed analysis. Longitude-latitude representation of 
pattern 3 of the pair of POP 3/4. Beginning top left and clockwise season 1, season 2, season 3, season 
4. 
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Figure 9. Simplified field. Results of the phase smoothed analysis. Longitude-latitude representation 
of the stationary part of the pair of POP 3/4 (left, top and bottom) and the pair of POP 1/2 (right). 
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Figure 10. Simplified field with 0- •r/2. Results from the 
fixed phase analysis. Seasonal evolution of the real part of 
the exponent I of the first pair of POP (solid line) and 3 of 
the second pair (dashed line). Units as in Figure 4. 

taken as a measure of the error in the determination of the 

Floquet exponents of our system. In all our simulations of 
the simplified field this relative error was roughly 10% of 
the cyclostationary pattern. 

On the other hand, the phase smoothed method fails in 
the seasonal identification of the stages of the evolution 
plotted in Figure 8. This, evidenced by the experiments 
reported in the next section, could also be expected from 
theoretical considerations (the model proposed being a fi- 
nite diference equation). 

5.2. Ability to Identify the Phase of the Seasonal 
Dependence 

To highlight this expected flaw of the phase smoothed 
procedure, a number of sensitivity experiments were per- 
formed. The fields analyzed correspond to the simplified 
case, given by (32); but for each simulation a different value 
of the phase 0 was chosen. We will refer here to the case 
0 - •r/2, because all the other experiments support the 
conclusions obtained with this one. The evolution with the 

season of the real part of the characteristic exponents iden- 
tified by the fixed phase method is represented in Figure 10. 
Although the asymmetries in the jumps are more noticeable 
in one of them, the change in the value of the phase could 
be identified easily. 

In principle, the cyclic dependence of the pair of POP 
identified with the phase smoothed method is confined to 
the patterns. To estimate it, one can separate the cyclosta- 
tionary POP vector •i in a stationary • and a cyclosta- 
tionary • c w i term: 

•i-•+• • (33) 

and afterwards define the normalized projections 

• •'• (34) 

But in fact, this parameter shows very little variation 
when analyzing fields with different phase dependences (go- 
ing from 0 to •r/2). 
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Figure 11. Simplified field with 0 - 0. Results of the phase smoothed analysis. Begining top left and 
clockwise, time coefficients of patterns 1 (solid) and 2 (dashed) of the pair 1/2, sorted by the season. The 
unit in the x axis is one seasonal cycle (in our case 4 hours) , the unit on the y axis is arbitrary. 
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Figure 12. As in Figure 11 but for 0- •r/2. 

Fortunately, the value of the phase of the seasonal de- 
pendence at each time step can be recovered from another 
parameter: the empirical time coefficients of the cyclosta- 
tionary part of the POP patterns. The time coefficients 
obtained as in (9) can be split using the procedure of (33): 

• = •? + • = r•w• + r•a,•. (3•) 
k k 

For the case 0 = 0 and for the pair 1/2 the time coefficients 
•, sorted according to the season, are represented in Figure 
11. Figure 12 represents the same coefficients at the same 
seasons but for the case 0 = •r/2. Notice how the phase 
of the cyclostationary dependence is sucessfully spotted by 
these time coefficients. At the months where there is a node 

in the deterministic field, the coefficients show only noise, 
while the signal appears clearly at the other extremals. 

The results of the analysis of our benchmark field with 
the phase fixed method are shown in Figure 13. The real 
part of the eigenvalue for each pair of patterns identifies the 
summer as the unstable season. To explain this apparent 
paradox (the phase of the analyzed field is 0 = 0), we must 
realize that the deterministic signal in our benchmark field 
is never brought to zero by the cyclostationary dependence, 
because of the second term in the right-hand side of (31). 
But in summer the sign of the first term in the right-hand 
side of (31) will change, and this term will interfere destruc- 
tively with the second term of the same equation. Such 
interference is captured correctly by the analysis. 

The diagnostic parameters of the phase smoothed analy- 
sis are the estimated frequencies and the time coefficients 

•i at each stage of the seasonal cycle. Notice that in this 
case, a stationary part does really exists in the pattern and 
therefore the stationary part identified is not due to errors 
in the estimation as in the 'simplified' case. Consequently 
the entire •i coefficients, and not only its cyclostationary 
parts have to be considered for the diagnostic. Fig 14 rep- 
resents the time coefficients of pair of POP 1/2 identified 
in the benchmark field by the 'phase smoothed' method at 
stages corresponding to four different seasons. While the 
frequency of the signal can be identified in all the other 
seasons, coefficients in summer are mostly noise. 
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Figure 13. Benchmark field with 0 - 0. Results of the 
fixed phase analysis. Seasonal evolution of the real part of 
the exponents •'1 (solid line) and 0'3 (dashed one). Units as 
in Figure 4. 
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Figure 14. Benchmark field with 0 - 0. Results of the phase smoothed analysis. Time coefficients of 
the patterns 1 (solid) and 2 (dashed) sorted by the season. Units as in Figure 11. 

5.3. Accuracy in the Determination of the Wave 
Characteristics 

It has been shown by the analysis of the simplified field, 
that errors in the determination of the Floquet exponents 
can be estimated by the stationary part of the identified 
POP. A simple analysis suggests that in some cases a refor- 
mulation of the cyclostationary dependence of the dynami- 
cal matrix in terms of the tan(•oat) and cotan(•oat)(•o• being 
the cyclostationary frequency) instead of sine and cosine of 
the same argument, as was originaly proposed. Both ways 
were implemented and set to the analysis of the simplified 
version of our benchmark field. The stationary patterns 
(which measure the error in this case) were stronger when 
using the sine and cosine than when using the tangent and 
cotangent formulation. 

In all the analyses carried out for the present work, the 
phase smoothed approach gave a better estimation of the 
POP frequency than the other method. However, the anal- 
ysis of the empirical time coefficients si at the right season 
gave the best frequency's estimation. 

6. Discussion 

To include the cyclostationary dependence in a linear in- 
verse model of a multivariate geophysical data field, two 
different methods were proposed [Hasselmann and Barnett, 
1981]. The apphcation of both methods to the analysis of 
real data (Storch et al ,1993; OrtizBevid, 1993) put forward 
a number of questions. The procedure reported here was in- 
tended as a way of solving them: synthetics data fields are 

build and analyzed with the two methods. These synthetic 
fields include two signals buried in noise. The signaJs corre- 
spond to two different geophysical waves, with spatial and 
time behavior well differentiated. To perform sucessfully, 
an analysis procedure has to be able to separate the signals, 
and to estimate accurately the spatial and temporal charac- 
teristics and also the seasonal dependence of each. Because 
the true characteristics of the signals present in the synthetic 
data are known, the output of the analysis performed using 
each of the models can be given an interpretation while the 
performance of both models are compared. 

In the first approach the data are sorted according to the 
stage of the cycle or phase value. The value of the sea- 
sonal dependence for each of the subseries built in this way 
remains unchanged through the analysis. Because of the 
reduced length of the time series used for the identification 
of model's parameters, errors are expected to be important. 
The anaJysis performed here with this method shows that 
they are and as a consequence the different signals present 
in the data are not well estimated. For seasons where the 

signals are weak, the patterns are intermixed. In the sec- 
ond method, the phase is smoothed and modelled into the 
parameters of the finite difference equation system. The 
method succeeds at separating the signals' frequencies and 
at identifying the spatial patterns and is able to give a cyclic 
evolution but cannot label its stages (the phase). 

For the case of the phase fixed method, the analysis shows 
how the errors in the estimation of the model parameters 
allow to identify the seasonal dependence directly from the 
eigenvalues of the forward seasonal matrices B •. It also 
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points to the importance of visual inspection to detect an 
intermixing of the patterns and suggests that the use of the 
normalization condition of (22) can lead to confusion if the 
initial season is not well chosen (see the comments to Fig- 
ures 13a, 13d in Storch et al [1993]. The phase smoothed 
method is greatly improved by this exercise. The empirical 
time coefficients sorted by the phase were identified as the 
useful parameter to label the cyclostationary dependence of 
the field. The idea of using the empirical time coefficients •? 
as diagnostic parameter of the POP output is not new. In 
fact in some of the previous applications of the POP station- 
ary method [Xu and Storch, 1990; Penland and Magorian, 
1993], the coefficients •i are used to estimate the frequency 
associated to the POP pattern with preference to the value 
given by the corresponding eigenvalue of the dynamical ma- 
trix. 

The analyses also suggest that some features of the ob- 
served low-frequency climatic variability may have a simple 
explanation. For instance, the smallness of a geophysical 
signal (the ENSO signal) in spring has been the source of 
much speculation [Xue et al., 1994]. This feature would 
account for the loss of predictability skill of coupled atmos- 
phere - ocean models initialized at this season. It has been 
explained as the consequence of a destructive interference 

between the ENSO and the quasibiennial oscillation (QBO) 
signals [Wang, 1994]. Our analysis of the benchmark field 
shows that the interference between the stationary and the 
seasonally dependent part of the one (ENSO) signal would 
produce the same effect. 

Only a few of the analyses of different simulations that 
were performed have been detailed here. Many other were 
carried out: on synthetic data obtained by changing the 
wave parameters, the phase of the cyclostationary depen- 
dence, and the amount of noise and/or the length of the 
time series. They have been omitted because their results 
were not different from the ones described here. Analysis 
of synthetic data where the stochastic white noise forcing 
was replaced by red noise without spatial structure was also 
carried out and always supported the conclusions obtained 
by using white noise in the simulations. 

Appendix: Determination of the Characteristic 
Matrix and Floquet's Theorem 

The determination of the characteristic matrix • and 

of the fundamental state vectors gk(t) is a somewhat in- 
volved procedure based on Floquet's theorem, which we 
review briefly here following Magnus and Winklet [1966]. 
Through out this review, any index that is repeated in a 
product is automatically summed on from I to n, that is 

= 
If Y(t)is an n-dimensional vector of the form Y(t) - 

[r• (t), r•. (t), ...r,•(t)] 1 that satisfies the n-dimensional differ- 
ential equation system 

dt•(t) -- A(t)F(t) (A1) 

where the dynamical matrix A(/) is periodic of period 

A(t + Ta) = A(t). (A2) 

Floquet's theorem states that the solutions to (A1) can 
always be written as 

•(•) = c•p(•a•)•; a• = •- •0, (Aa) 

where the /zk are Floquet's exponents (constant in time) 

and the • are no longer constant in time but periodic with 
period T•. 

Proof: If •i(t) is a set of n solutions that satisfy 

yo (O) = 5,j; 5,i = 1, 5, 3 -- O, i -• j. (A4) 

Any other solution •(t) of (A1) can be written as a linear 
combination of this set. The values of •i(t) for to < t < T• 
collected into a matrix Y(t) form the fundamental matrix 
of the system. The value of Y(t - T•) = • yields the 
characteristic matrix of this cyclostationary system. Let 
•i(t) with i=l,...,n be another set of n solutions that satisfy 

= = 
where the •i are the eigenvectors of the characteristic matrix 
• associated to the eigenvalues pi. 

ß •- •p• (A6) 

and because (A1)is linear, the relationship given by (A5) 
will hold for any time t. Since •i(t) are also solutions of A1, 
we can write 

= (A7) 
where ci• = •i•, the elements of the matrix •. 

For any time t = t + T•, and taking into account first 
(AS), then (A7), then (A6), •i will take the form 

+ = + = 

that by use of (AS) can be reduced to 

+ - (Ao) 

where here no sum to repeated indexes is implied. 
The pii -- Pi are Floquet's multipliers, and from them 

Floquet's exponents are obtained as 

IZ, = ln(p,)/T•. (A10) 

We can then show that the •i(t) are periodic 

+ - + + 
= Z,(t)exp(-IZ,t)= •,(t) (All) 

where here again no sum to repeated indexes is implied. 
Now since any solution F(t) can be written as a linear com- 
bination of the Zi, expression (A3) is true. 

In our code CYPOP, which computes cyclostationary 
POP with the phase smoothed method, (A6) and (A10) 
are used to estimate the Floquet exponents and (All) to 
obtain the periodic patterns •i(t). 
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