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SUMMARY 
The empirical forecasts presented here were developed as a benchmark for dynamical forecasts provided 

by uncoupled and coupled general-circulation models. The predictand field is the variability of 850 P a  air 
temperature anomalies over the North Atlantic basin at timescales greater than eight months. The predictor 
field is chosen among different datasets (sea surface temperahm anomalies, the predictand field itself, etc.). 
Some of the experiments make use of a single predictor field, whereas others use several. The performance of 
the forecasts, measured by the correlation between observed and forecast fields, is assessed against the skill of 
forecasts performed on a simple persistence basis. 

The statistical scheme used to make the forecast is based on singular-value decomposition ( S M )  of the 
cross-covariance matrix between the predictor and the predictand field at the lead requested for the forecast. prior 
to the SVD calculations, we remove with a filter the variability of predictor and predictand fields at timescales 
below eight months. Forecasts of air temperature anomaly have been made over the period from 1970 to 1998, 
at different lead times. The highest skill is achieved when the predictors are computed from anomalies of sea 
surface temperature over roughly the same domain as the predictand. The skill of the forecast is i m p o m t  south 
of 45"N and is broadly consistent through the three decades. About 56% of the variance of the eight-month filtered 
predictand field (36% of the variance of the original field) can be forecast nine months ahead. The best values of 
the forecast skill appear in two regions, one in the subtropics and the other around the Iberian peninsula. Only in 
this last region, and also in another region over the USA, does the skill of the forecasts beat the skill of persistence. 

In order to identify the origin of the skill we study its dependence on the target season. We also investigate 
its dependence on the phase of the El Niao-Southern Oscillation (ENSO) and the North Atlantic Oscillation. The 
skill is, in first place, related to the ability of the scheme at capturing the variability at biennial and ENSO-related 
timescales. 
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1. INTRODUCTION 

Not long ago, empirical models were the only tool available for forecasting anoma- 
lies of the atmospheric circulation at lead times greater than two months. Basically, 
all empirical forecasts take advantage of the relationship between large-scale spatial 
patterns of the anomalies of some climatic variable and certain timescales of variability, 
as pointed out in the seminal work of Namias (1953). Empirical forecasts of the state of 
El Niiio-Southern Oscillation (ENSO) show skills that are above those of some interme- 
diate models and are comparable with the skills of some coupled models (Barnston and 
Ropelewski 1992; Penland and Magorian 1993). The skill of empirical forecasts for the 
mid latitudes is only modest (Davis 1976; Barnett et al. 1984; Barnett and Preisendorfer 
1987; Shabbar and Barnston 1996; Johansson et al. 1998; Vautard et al. 1998). Also, 
they offer no prospect for dramatic improvements similar to the potential offered by cou- 
pled general-circulation models (GCMs). Some improvement can, nevertheless, arise 
from the use of new statistical techniques benefiting from longer and better versions of 
existing datasets, or from the incorporation of new observations as additional predictors. 

The empirical forecasts presented here were intended as a benchmark to assess the 
GCM forecast skill in a European Union funded project entitled 'The prediction of cli- 
mate variability at seasonal timescales (PROVOST)' (Palmer and Shukla 2000). Empir- 
ical forecasts can also contribute to the improvement of forecast skill of coupled models 
(Webster and Palmer 1997). They can highlight relationships iunong the predictors and 
* Corresponding author: Departamento de Fisica, Universidad de Alcal& C. Barcelona, Km. 33.6, Alcalh de 
Henares, Madrid, Spain. e-mail: mjose.ortiz@uah.es 
@ Royal Meteorological Society, 2001. 
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predictand fields. They can also improve forecasts by correcting model bias for some 
specific variable (Feddersen et al. 1999). Finally, they can contribute to extending the 
lead time of the dynamical forecasts, which may be limited by the available computing 
resources. In the empirical forecast scheme presented here, we incorporate both bet- 
ter predictor and predictand fields and a statistical procedure that, although more than 
twenty years in use as an analytical tool, has not been employed for climatic forecasting 
until the start of the PROVOST project. 

The main spatial and temporal scales of the interannual variability of the predictand 
field are those recognizable in the evolution of any other atmospheric variable, and can 
be characterized by the state of the North Atlantic Oscillation (NAO). Although the NAO 
was identified long ago (Walker and Bliss 1932), the interest of the scientific community 
in it has been reawakened by a number of observational and modelling studies (see, for 
instance, Rodwell et al. (1999)). The connection between the NAO and the ENSO (the 
major interannual signal at planetary scale), as investigated by van Loon and Rogers 
(1977), has also received renewed attention. 

The basis for long-range weather forecasting in the North Atlantic was laid out by 
Ratcliffe and Murray (1970), who pointed out the lagged correspondence between the 
North Atlantic sea surface temperature and the European pressure field. On the other 
hand, the predictability of the atmospheric flow in the North Atlantic has been targeted 
by numerous modelling studies. For instance, Palmer and Sun (1985) have shown that 
(i) a strong ENSO signal results in enhanced predictability in our domain of interest, and 
also that (ii) anomalously warm sea surface temperatures (SSTs) in the western North 
Atlantic over a large region centred to the south and south-east of Newfoundland act to 
shift the jet stream and storm tracks to the north, producing anomalously high surface 
pressure over the North Atlantic. 

The empirical forecasts presented here take advantage of the availability of newer 
oceanic and atmospheric datasets. Longer and better datasets of the atmospheric circu- 
lation have progressively been made available through the NCAR*-NCEPt reanalysis 
project (Kalnay et al. 1996) for the three years of the PROVOST project. An SST dataset 
was built for the purposes of this forecast by combining the SST data of the Comprehen- 
sive Ocean and Atmosphere Datasets (COADS release 2) covering only up to 1993, with 
the Integrated Global Observation Services System (IGOSS) data with observations up 
to 1999. Details of the datasets used for the predictand and for the predictor fields are 
given in section 2. 

A comparative assessment of the advantages of the statistical technique used in 
the present work (singular-value decomposition (SVD)) can be found in the papers by 
Bretherton et al. (1992) and Navarra (1993). A summary of the technique and of our 
forecast scheme is given in section 3. 

In section 4 we present the layout of the forecast experiments. Then we describe in 
detail the results of the experiment that scores the highest skill; this is the one whose 
predictor is the SST anomalous field in the North Atlantic. Additional experiments, 
which were carried out in the hope of improving the forecasts in higher latitudes, are 
only reviewed briefly. 

In section 5 ,  the results are analysed and discussed. Forecasts were produced for the 
three decades from 1970 through to 1998. The performance of our scheme at forecasting 
a significant cooling in the mid 1970s and a persistent warming in the first part of the 
1990s is presented as a case study. The dependence of the skill on the targeted season, 
and on the ENSO or NAO phase, is also considered, Finally, the singular vectors used in 
* National Center for Atmospheric Research. 
t National Centers for Envirunmental Prediction. 
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the forecast are clustered into a few classes. An analysis of the most important among 
these vectors, and their timescales of variability, allows further insight into the sources 
of the forecast skill. 

2. DATA AND DATA TREATMENT 

In the forecasts presented here, the anomalous atmospheric circulation is represented 
by the 850 hPa air temperature anomalies (the predictand field). With respect to other 
atmospheric variables, this field has several advantages, apart from its interest for the 
public. Rain, an obvious candidate in this sense, was discarded because it is not very 
well simulated by GCMs. Air temperature at 850 hPa has the advantage of being 
closely connected to sea-level air temperature, without being sensitive to the different 
topographies of the GCMs. Therefore, air temperature anomalies became a common 
target for all the forecasts in the PROVOST project. In the case of the empirical models, 
air temperature at 850 hPa was also a convenient variable because it is known to be well 
represented by the NCAR-NCEP reanalysis. 

The choice of the predictand domain was based on two factors. On the one hand, our 
forecasts needed to be relevant for the European climate. Additionally, the rationale that 
underlies all empirical forecasts is that the ocean, with its slow timescales, constitutes 
the principal source of long-term atmospheric predictability. Therefore, the domain was 
originally chosen as the North Atlantic basin, from 90"W to 10°E, and from 20"N to 
70"N. Later, to improve the forecasts, the northern boundary was moved up to 90"N. 
The region selected includes large part of coastal Europe to the east, and part of the 
US and Canadian coast to the west. It also includes the Caribbean, a region of tropical- 
extratropical interactions. 

Monthly-mean air temperature anomalies at 850 hPa were derived from the NCAR- 
NCEP reanalysis dataset* (Kalnay et al. 1996) for the period 1958-1998. The anomalies 
were computed with respect to the 41 -year climatology. 

Originally, our forecasts considered only one predictor field, the SST anomaly. 
This is a natural predictor for atmospheric variables if one wants to compare empirical 
predictions with those obtained with forced atmospheric models. As mentioned above, 
we built the predictor dataset for the required period (1950-1999) by merging the 
COADS (1950-1993) (Woodruff et al. 1987) and the IGOSST (1982-1999) datasets 
(Reynolds and Smith 1994). Both datasets are global, but their grid resolutions are 
different (2" x 2" for the COADS against 1" x 1" for the IGOSS dataset) and the grid 
points do not coincide; for the new dataset, the IGOSS observations were interpolated 
to the COADS grid. Additionally, some points from the COADS grid were discarded 
when quality was lacking in the neighbouring IGOSS observations (mostly near the 
coasts). From these monthly values, anomalies were computed in the same way as for 
the predictand field. This SST field can be updated continuously, and therefore we can 
supply forecasts for the next year without having to wait for the release of analysed 
fields (COADS, HadISSTS or IGOSS). However, the updated SST field is quite similar 
to the available analysed SST fields, as indicated by Fig. 1, which compares the root- 
mean-squares of our SST field and of the HadISST data (Rayner et al. 2OOO). 

* This dataset was provided by the NOAA-CIRES Climate Diagnostic Center, Boulder, Colorado, USA, h m  
their web site at http:llwww.cdc.noaa.gov/ 
f These data were downloaded from the IGOSS web site http://imgxid.ldgo.columbia.edu 
$ This dataset was provided by the Hadley Centre for Climate Prediction and Research, Met Office, Bracknell, 
Berkshire. UK. 
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Figure 1.  (a) The root-mean-square of the sea surface temperature (degC) obtained by merging the IGOSS and 
COADS datasets (1950-1999). (b) The root-mean-sqm of the sea surface tempera- from the HadISST dataset 

for the same period. See text for further information. 

Once a predictor variable has been selected, the choice of the most appropiate spatial 
domain has to be decided. A global domain has the advantage of focusing on the large- 
scale patterns, that are associated with longer timescales. But it can also result in a 
decrease in the forecast skill if many of the time series in the predictor field are not 
actually related to the predictand. 

Several forecast experiments have been carried out, and they can be classified into 
three groups according to the predictor variable. In the first set, the SST anomaly 
has been used as a predictor. Differences between the experiments of this set lie in 
the predictor domain. In a first case, the predictor domain was chosen to coincide 
roughly with that of the predictand (90°W-100E, 2O0N-9O0N). In another case, the SST 
anomaly in the North Pacific (120°E1300W, 20'N-90's) was used as the predictor 
field. In the second set of experiments various atmospheric fields, in the same domain 
as the predictand (North Atlantic basin), played the role of predictor field. Among 
them we have the predictand field itself (autoprediction), the sea-level pressure (SLP) 
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anomaly and the 700 hPa dynamic height anomaly (considered a good predictor in 
previous empirical forecasts for northern Europe (Johansson et al. 1998)). The last set 
of experiments used a multiple-predictor scheme, combining two of the data fields used 
in the previous single-predictor experiments. 

To study the origin of the skill, we also considered two climate indices. The Niiio3 
index was obtained by averaging SST anomalies in the N%o3 region (15O"W-9O0W, 
5's-SON). The NAO index was calculated from monthly values of SLP of the NCEP 
reanalysis dataset (previously filtered to remove the variability below eight months) as 
the difference between Lisbon (Portugal) and Stykkisholmur (Iceland), according to 
Hurrell(l996). 

Another NAO index, computed from air temperature anomalies averaged over 
the region (25"W-2.SoW, 37.5"N4S0N) minus those of the region (2SoW-12.S0W, 
62.5"N-70°N), is also used in this paper. This index characterizes an important climatic 
signal in the forecast field. 

3. STATISTICAL MODEL AND FORECAST SCHEME 

We can use several statistical methods to study the coupled variability between two 
fields. Compared with some of them (such as canonical correlation analysis) SVD is 
less biased towards the dominant modes of variability yielded by each field separately. 
Instead, SVD extracts the coupled features between the fields, even when these represent 
a small part of the total variance of each one (Bretherton et al. 1992). 

Let x j  and y j  be, respectively, the values of the predictand and the predictor field 
at the point j of the spatial grid and at time t (t = 1, . . . , N t ) .  For a forecast at a given 
lead 1,  we use the SVD of the cross-covariance matrix between predictor and predictand 
field at lag I. 

This cross-covariance matrix can be written in the form 

where ~ i k  and ukj are the components of the spatial singular vectors (uk and vk) of the 
predictand and the predictor field, respectively, and ak are the singular values of the 
covariance matrix between the fields at lag 1 associated with a singular mode k. Further 
details about the statistical procedure have been given by Navarra (1993) and Wallace 
et al. (1992). Because the patterns can be ordered decreasingly by their corresponding 
singular value, yielding the amount of the coupled covariance explained at lead I, 
a reduction in the number of degrees of freedom is then straightforward. Through 
the projection of each field onto the corresponding vector we obtain the empirical 
coefficients (a&), bk(t)) of the time evolution of each field. In our predictive scheme, 
the predictor evolution in time is related to that of the predictand by these empirical 
coefficients: 

U k ( t )  = C k b k ( t  - 0,  (2) 
and, therefore, the relationship between the predictor and predictand field can be written 
as 

(3) 
P 

xrnj(t) = C ckbk(t - Ovkj, 
k=l 

where the Ck coefficients are obtained by least-square minimization through the whole 
length of the training sample and x m j  is the forecast value for the x j  field at time t. 
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4. FORECAST EXPERIMENTS: LAYOUT AND SKILL 

The scheme followed here for the forecast is represented as a diagram in Fig. 2. It is 
a combination of: (i) a preliminary filtering in time; (ii) the procedure described in the 
previous section; (iii) a spatio-temporal filtering; and (iv) the final forecasting stage, as 
illustrated in Fig. 3. 

(i) Prior to each forecast, predictor and predictand time series are filtered removing 
from the training sample the variability at timescales below eight months. The time filter 
employed is a convolution filter. If r is the smoothing function and Sk the time series to 
be filtered, the discrete convolution of these functions is 

where 
L 
2 

h ( j )  = - - (1 - j )  

h ( j )  = 0 

L 
l < j < -  2 ’  
L L - < j < N - -  
2 2 ’  

L L 
h ( j )  = -- 2 + ( N  - j )  N - T < j < N ,  

and j = 1, . . . , N ,  L is the width of the smoothing function, and h (non-zero only 
near the borders) allows the window to become asymmetric there. In this way we 
avoid including any information about the future in the training sample. Predictor and 
predictand fields are split into a training sample and a validation period. To make a 
real forecast, the time filter is applied exclusively to the training interval. The need 
for such filtering is indicated in Fig. 4; in the averaged atmospheric spectra there is 
an important and noisy variability at timescales below eight months, unmatched in the 
oceanic averaged spectra. Our interest in forecasting at lead times of at least two seasons 
makes such filtering advisable so as to focus on the longer temporal and spatial scales. 
As mentioned in section 2, other atmospheric fields have been used as predictors- 
even the predictand itself; although the timescales of variability of the predictor and 
predictand fields are similar in this case, they have also been filtered in a similar way for 
the sake of methodological consistency. 

(ii) In a statistical forecast, the parameters of the model are determined from the 
training sample. However, the assumptions required by the classical theory of estimation 
(i.e. linearity) might not be a satisfactory hypothesis for long records of data such as 
ours, which actually arise from nonlinear dynamics. It may prove convenient, then, to 
regard the time series as ‘piecewise linear’, in which case the training sample should 
not be too long. In the present work, a number of experiments have been carried out by 
varying the length of the training sample from 30 years to 6 years (see subsection 4(c)). 
The results point to a 12-year period as being the optimal training sample size. Validation 
is carried over the whole ensemble of forecast values, that is from the first forecast in 
January 1970 to the last one in December 1998. 

(iii) The spatio-temporal filtering makes use of the expansion of the predictor 
and predictand fields in the basis provided by the singular vectors of each field. 
By truncation, we retain only a few singular vectors that together are supposed to 
explain most of the joint variability of both fields. To determine the optimal number 
of vectors to be retained, the most common and simple criterion is based on the 
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Figure 2. Representation of the forecast scheme described in the text. The procedure is repeated whenever a 

forecast at time t is issued. 
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Figure 3. Schematic representation of the fourth stage in the forecast process. This illustrates how the training 
period is used to produce the forecasts. 
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Figure 4. (a) The power spectra of the 850 hPa air temperature anomalies averaged over the band (WoW-lOOE, 
35ON-65"N). (b) The power spectra of the sea surface temperature anomalies averaged over the same domain. 

The horizontal axis is labelled in years. 

behaviour of the variance of the field reconstructed with different numbers of vectors. 
The truncation order n should be such that an increase in the number of vectors used in 
the reconstruction does not yield a significant increase in the explained variance. In the 
present work, we also take into account how well major climatic signals are represented 
in the filtemd field. Figure 5 shows the fraction of variance explained by the predictand 
field as a function of the number of singular vectors retained, and the correlation between 
the NAO index computed from the unfiltered predictand field and the NAO index from 
the filtered predictand field as a function of the number of singular vectors used in its 
reconstruction. 

In all of the forecasts, the expansion has been truncated after the 15th term, for both 
predictor and predictand fields (n = 15). The forecast, issued at time ti, will then consist 
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Figure 5. The cumulative variance explained by the predictand field as a function of the number of singular 
vectors retained (full line), and the correlation between the North Atlantic Oscillation (NAO) index and the index 
calculated from different anomalous temperature-field reconstructions, against the number of singular vectors 
retained for the reconstruction (dashed lime). The NAO index is computed as the difference between the 850 hPa 
air temperature anomalies averaged over the regions (25"W-2.5"W, 37S0N-45"N) and (25"W-12.5"W, 62.5"N- 

70"N). 

of 15 values for the 15 coefficients needed to calculate the predictand field at time ti  + 1 ,  
together with the retained singular vectors. 

Finally, it is worth mentioning that no predictor interfield weighing has been carried 
out in any of the forecasts. The respective number of grid points of SST and 850 hPa air 
temperature determines their natural weights. 

(iv) The validity of our forecast procedure is assessed in terms of the correlation 
between the twice-filtered observed field and the forecast one. This correlation S, is a 
measure of the forecast skill and is defined by: 

M 

i= l  i=l 

where xo is the twice-filtered predictand field obtained from the observations, xm the 
forecast field, 1 is the lead time, and summation extends over the M forecasts issued 
for each experiment. Values of the skill must be above the zero-confidence interval- 
this can be roughly estimated at the 95% significance level by Ss = 2/- (Jenkins and 
Watts 1968), for values of M (the number of forecast experiments considered) greater 
than 20. We call this threshold value S, the significant skill. Also, because the number of 
spatial patterns used to forecast is not small, the problem of an artificial skill exclusively 
due to the large number of predictors has to be considered. This artificial skill has been 
estimated from a big number (100) of Monte Car10 forecast experiments. For each of 
these, a different synthetic predictor field has been used. These fields are a 'proxy' for 
the North Atlantic SST anomalies, assuming that the evolution in time of this variable 
can be modelled by a Langevin equation (Frankignoul and Hasselmann 1977): 

dYt - dt = -Byt + wt 

where wt is a driving noise, supposed to be white, that represents the atmospheric 
forcing. The forecast experiments have been carried out along the lines of the real 
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forecast experiments presented above. Each of them uses the same value of the feedback 
parameter /? at each grid point (estimated from the observations), but uses a different 
realization of the forcing noise. The average skill of these experiments provides an 
estimation of the artificial skill S,. When presenting the skill of the real forecast 
experiment, regions with values below this artificial skill at the 95% confidence limit 
have been shaded. In any case, it is accepted that a forecast may be useful only if values 
of the skill exceed 0.6. 

To assess the relevance of the forecasts, at the present ‘state of the art’ for the public, 
we estimated the similarity between the annual means of the air temperature field at one 
location and the annual mean of the forecasts at the same place. This similarity was 
measured by the ‘linear error in probability space’ (LEPS) scores (Potts et al. 1996). 
For a start, to compute the LEPS scores between two fields, the observed and forecast 
situations are reduced to three categories (above, normal or below). The agreement or 
disagreement in each year between the observed and the forecast categories is given by 
their product and is accumulated in a contingency table. Afterwards a (3 x 3) matrix T 
is built from this table. This matrix is multiplied by a scoring matrix 

1 1.35 -0.15 -1.20 
-0.15 0.30 -0.15 
-1.20 -0.15 1.35 

that weights more heavily the anomalous situation that we are interested in predicting, as 
compared with the normal ones. The resulting score is divided by the score obtained for 
perfect forecasts for the same year (vautard et al. 1998). The mathematical expression 
for the LEPS score is: 

i ,  j=1 

3 S =  9 (7) 

i=l 

where aij and Ti j  are the components of the matrices A and T, and Qi denotes the 
total number of observed occurrences of the category i which quantifies the value of the 
forecasts in terms of information theory. LEPS scores can take values from -1 (for a 
totally wrong forecast) to +1 (for a totally correct one). 

(a) Forecasts with the North Atlantic SST as the predictorfield 
Forecasts of the filtered 850 hPa air temperature anomalies over the North Atlantic 

at different leads have been produced for three decades starting in January 1970, using 
the SST anomaly as the predictor field. The skill of these forecasts at a nine-month lead 
for each of the decades, is represented in Figs. 6(a), (c) and (e). Figure 6(c) shows how 
the skill worsens considerably during the 1980s. Nevertheless, over the three decades 
values of the skill remain useful (above 0.6) over two regions, one in the subtropics 
and the other near the Iberian peninsula. Another key region in our domain is the area 
around Iceland where values of the skill, though positive, are useless (except for the 
1980s decade, when the skill over Iceland is quite good). Additionally, we consider 
the region of lowest skill in the north-east, near the Labrador sea, to characterize the 
forecasts. The differences between the forecast skill achieved with our technique and 
the one produced under the assumption of persistence are also shown in Figs. 6(b), (d) 
and (e). 
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Figure 6. The spatial distribution of the correlation skill of the forecasts of 850 hPa air temperature anomalies 
over the North Atlantic region during (a) the 1970s, (c) the 1980s and (e) the 1990s (the regions where skill is 
below the artificial skill are shaded). As control measure the difference between the skill obtained with our model 
and the skill of persistence is presented in (b), (d) and (f) for the same decades (persistence is defined as the 

predictand autocorrelation at the lag time required for the forecast). 

The spatial distribution of the skill for the entire forecast period 1970-1998 is 
displayed in Fig. 7(a) against the difference between it and the skill of the persistence 
forecasts (Fig. 7(b)). The spatial pattern in Fig. 7(a) resembles the first heterogeneous 
correlation map at a nine-month lead (not shown) calculated from the first coefficient 
(bl (t)) in the expansion of the predictor field and the whole predictand field (Wallace 
et al. 1992; Bretherton et al. 1992). This map indicates those grid points where the SST 
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Figure 7. (a) The spatial distribution of the comlation skill of the forecasts of 850 hPa air temperature anomalies 
over the North Atlantic region for the entire forecast period (1970-1998) (regions whose skill is below the values 
estimated for the artificial skill are shaded). (b) The difference between the skill obtained with our model and the 

skill persistence (persistence is defined as the predictand autocomlation at the lag required for the forecast). 

field is more skilful at predicting the air temperature anomalies. The pattern in Fig. 7(a) 
is also similar to the spatial distribution of the predictand field variance. The regions 
where the skill is useless (the north and north-west of the domain) are connected with 
the short timescales that have been removed with the preliminary filter. 

Values of the pattern in Fig. 7(a) do not differ greatly from those obtained in a 
cross-validation experiment. In this experiment, all the available years of observation 
except the forecast one were included in the training sample. Consequently, the filter 
has been modified to avoid including information about this year. The cross-validation 
skill and its persistence control appears in Fig. 8. The scores of the cross-validation skill 
are higher since both future and past information is used in the forecast. 

Figure 9 shows the dependence of the skill averaged over the four characteristic do- 
mains on the forecast lead. These domains are selected in the following way: Domains 
I (75"W-30°W, 20°N400N) and 11 (3OoW-O0W, 35ON-50"N) are the regions where 
the forecasts perform best, centred on Bermuda and around the Iberian peninsula, re- 
spectively. Domain III (25°W-100W, 6OoN-7O0N) is a region around Iceland, included 
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Figure 8. As Fig. 7. but for the cross-validation experiment (see text). In this experiment all the available 
observations, except the year that includes the targeted month, were used as the training sample (regions where 

the skill is not significantly different from the artificial skill are shaded). 
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Figure 9. The dependence of the skill averaged over the four spatial domains on the forecast lead: domain I 
(full line), domain II (long-shofi dashed line), domain III (dot-dot&hed line) and domain N (dotted line). The 

horizontal axis is labelled in months. 
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TABLE 1.  VALUES OF THE CORRELATION AND 

SCORES BETWEEN THE ANNUAL MEANS OF THE 
ORIGINAL (UNFILTERED) AND THE NINE-MONTH- 

LEAD FORECAST FIELDS 

THE LINEAR-ERROR IN PROBABILITY SPACE (LEPS) 

Correlation coefficient LEPS score 
Domain I 0.53 0.46 
Domain II 0.37 0.3 1 
Domain Ill 0.21 0.10 
Domain IV -0.17 0.21 

In both cases the values of the skill are averaged over the 
following regions: 
Domain I = (75"W-30"W)(20"N-40"N); 
Domain II = (30°W-OoW)(350N-500N); 
Domain JII = (25"W-10"W)(6OON-70"N); 
Domain IV = (85°W-550W)(45"N-650N). 

because of its importance for the NAO index. Domain IV (85'W-55"W, 45ON-65"N) 
corresponds to a region over Canada (near Newfoundland), with the lowest skill values. 
Forecasts are useful up to nine-months lead in domain I and up to three months ahead 
in domain II. 

Some complementary experiments have also been carried out to investigate the 
sensitivity of the skill to the training sample size. Altogether, the optimal length is 12 
years but there are geographical differences. In domains I and II, the best skill is obtained 
for small training samples sizes (12 years or even shorter), while for domains III and IV, 
better skill is obtained from training sizes between 16 and 22 years. The LEPS scores 
computed, as explained above, are given in Table 1 for the four domains. 

(b) Forecasts with other predictorfields 
In an attempt to improve the forecast skill over the north and north-west of the 

domain, we have sought alternative predictors. Thus, experiment 2 probes into the 
influence of the northern Pacific anomalous state on the North Atlantic atmospheric 
evolution. On the other hand, interannual variability in the region might be primarily 
linked to the internal variability in the northern region of the domain, and be only 
weakly related to the SST predictor field. To test this hypothesis several atmospheric 
fields have been used as predictors: 850 hPa air temperature (AT) anomalies over the 
North Atlantic domain (experiment 3), over the northern Pacific domain (experiment 4), 
and over North America (experiment 5) ,  and SLP anomalies over the North Atlantic 
basin (experiment 6). We have also experimented with low-pass filtered versions of two 
predictor fields, the SST anomaly and the 850 AT anomaly; these are experiments 7 
and 8, respectively. Forecasts were also produced using as a predictor the North At- 
lantic 700 hPa geopotential height anomaly field (experiment 9). The predictand field 
remained the same through all the experiments. In Table 2 we present a summary of 
the different experiments at nine months lead and compare performances in terms of 
the mean forecast skill averaged through the four selected regions described above. 
Values of the skill of the cross-validation procedure for these regions appear as ex- 
periment 1 +. 

Whereas all of those mentioned above were single-predictor experiments, combina- 
tions of two predictor fields were also employed at a further stage. The combined fields 
and the resulting average skill in each of the domains are also summarized in Table 2. 
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TABLE 2. VALUES OF THE SKILL FOR THE DIFFERENT FORECAST EXPERIMENTS WITH A NINE-MONTH 
LEAD TIME 

Experiment Predictor field Domain1 DomainII DomainIU DomainIV 

1 
1+ 
2 
3 
4 
5 
6 
I 
8 
9 
1 +2 
1 +3 

North Atlantic SSTA 
North Atlantic SSTA 
North Pacific SSTA 
North Atlantic ATA 850HPa 
North Pacific ATA 85OHPa 
North American ATA 850HPa 
North Atlantic SLPA 
North Atlantic LF ATA 85OHPa 
North Atlantic LF SSTA 85OHPa 
North Atlantic HGTA 700HPa 

0.62 
0.73 
0.56 
0.58 
0.5 1 
0.48 
0.54 
0.53 
0.60 
0.58 
0.58 
0.54 

0.48 
0.74 
0.52 
0.48 
0.40 
0.46 
0.41 
0.41 
0.42 
0.39 
0.47 
0.45 

0.31 
0.60 
0.16 
0.14 
0.19 
0.14 
0.12 
0.15 
0.23 
0.26 
0.24 
0.16 

-0.10 
0.35 
0.11 
0.06 
0.05 
0.12 
0.05 
0.06 
0.01 
0.03 
0.04 
0.02 

Experiments 1 to 9 used a single predictor field and experiment If used the cross-validation procedure. Rvo 
last experiments used a combined predictor field. The predictor variables are: SSTA (sea surface temperature 
anomalies); ATA (air temperature anomalies); LF (low-frequency air-sea surface temperature anomalies, the 
band-pass filtered data retaining periods from 10-20 years); SLPA (sea-level pressure anomalies); and HGTA 
(geopotential height anomalies). The values of the skill (correlation between the predictand field and its 
forecast) are averaged over the domains defined in the footnote to Table 1. 

It is clear from the table that, among all the possible predictors, the SST anomalies in 
the North Atlantic score the highest skill values in all the regions except domain 4. In this 
last region, the atmospheric predictors (850 hPa AT anomalies, the same AT anomalies 
low-passed, and the 700 hPa geopotential height) do slightly better though, in general, 
the use of these predictor fields does not lead to significant skill improvements. 

(c)  Two case studies: The cold winter of I976 and the warm summer of 1994 
In order to analyse the forecasts supplied by our model, we turn now to two ‘case 

studies’: the winter of 1976 and the summer of 1994. To study these periods the 
predictand’s evolution was monitored by four indices, obtained from air temperature 
anomalies averaged over the four regions mentioned above. In the western subtropics 
(domain I) and near the Azores region (domain II), air temperature anomalies are 
characterized by a persistent cooling, from the beginning of the forecast interval up 
to the start of the 1980s, followed by a prolonged warming thereafter. To study these 
case studies, seasonal means (e.g. for winter (December, January and February), and so 
on) of the raw predictand, the filtered predictand, the predictor and the forecast field are 
computed. 

The persistent cooling in the low latitudes of the domain started at the end of the 
1960s. A very strong negative anomaly was formed in the central North Atlantic, and 
persisted there for almost three years (from spring 1968 to autumn 1970). At the end 
of this period, the negative anomalies were displaced towards the American coast and 
subsequently weakened. In the period 1972-1973 a positive anomaly appeared, with 
maximum in the region of the Gulf Stream separation. The anomalous situation still 
remained in winter 1976. This is the anomalous SST pattern (Fig. 10(d)) that we use 
to forecast the air temperature anomalies nine months later (Figs. lO(c)). The unfiltered 
SST anomalies observed during this period are shown in Fig. 10(e). The filtered and 
unfiltered target observations are also displayed in Figs. 1O(a) and (b). 

The prolonged warming of the early 1990s in the lowest latitudes of the domain 
seems to have started early in 1991. There was a diffuse warming along the North 
American coast with a negative anomaly in the north (Labrador Sea). The positive 
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Figure 10. A case study: The forecast in the winter of 1976 against the observations. The observed 850 hPa 
air temperature anomalies for (a) the filtered and (b) the unfiltered observations, (c) the forecast 850 hPa air 
temperature anomalies, and the sea surface temperature (SST) anomalies for (d) the filtered and (e) the unfiltered 
observations used in the fomast. The SST anomalies lead the 850 hPa air temperahue anomalies by nine months. 

anomaly gave rise to a subtropical warming. At the end of 1992, a negative anomaly 
appeared south of 40"N making the positive anomaly propagate eastward, up to the coast 
of the Iberian peninsula and the Mediterranean Sea, where a warming appeared in the 
summer of 1994. We have illustrated the SST anomalous pattern used in the forecast 
(Fig. ll(d)), the corresponding unfiltered SST anomalies (Fig. ll(e)), the observed 
filtered and unfiltered 850 hPa air temperature anomalies (Figs. 1 l(a) and (b)) and the 
forecast (Fig. 1 l(c)). Notice that, although the general evolution of the anomalies is well 
captured, the forecast values are too weak. 
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Figure 11. As Fig. 10, but for the forecast in the summer of 1994. 

5 .  RESULTS 

We analyse here the values of the skill obtained for three decades of forecasts of the 
850 hPa air temperature anomalies in the North Atlantic basin with North Atlantic SST 
as the predictor field. Spatial, as well as temporal (seasonal, decadal), characteristics of 
the skill are examined. In addition, by an analysis of all the singular vectors used in the 
production of the forecasts, we sought physical insight into the atmospheric and oceanic 
processes leading to skilful forecasts. 

(a) Seasonal dependence of the skill 
We have investigated the seasonal dependence of the forecast skill. Results can be 

summarized as follows: in domain I autumn and winter are the best forecast seasons 
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Figure 12. (a) The Niiio3 index and (b) the NAO index (see text). The N303 index was obtained by averaging the 
sea surface temperature anomalies in the region (1M0W-WW, S"S-5"N). The NAO index was calculated from 
monthly values of sea-level pressure anomalies from the National Centers for Environmental Prediction dataset 
(filtered to remove the variability below eight months) as the pressure diffemce between Lisbon (Portugal) and 

Stykkisholmur (Iceland), according to Hwrell(lW6). 

and the worst is spring; predictions in region II achieve the best results in summer but, 
again, spring scores the lowest; in region III the best forecasts are obtained in summer 
and winter and the worst in spring; in region IV the skill in spring is considerably lower 
than those in the other seasons. For all of the domains, it is clear that the worst forecasts 
are for spring, and it can be concluded that the seasons our model is most skilful at 
forecasting are winter and summer. These results agree with previous similar studies 
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Figure 13. Comparison of the spatial distribution of the forecast skill for the El NSo-Southem Oscillation 
(ENSO) warm and cold phases. (a) The skill calculated as the correlation between the forecast and observed fields 
for the warm ENSO conditions, and (b) the skill calculated as the correlation between the forecast and observed 
fields for the cold ENSO conditions. The shaded areas indicate those points where the skill is below the values 

estimated for the artificial skill. 

(Barnett and Preisendorfer 1987; Shabbar and Barnston 1996; Johansson et al. 1998) 
for the USA, Canada and northern Europe. In these studies, winter turned out to be the 
best forecast season, followed by summer. 

(b)  Possible relationship between the origin of the forecast skill and coupling 
between the ENSO and NAO 

To study the origin of the forecast skill, we also tried to find a connection between 
the ENSO phase (as identified from the NSo3 index-Fig. 12(a)) and with the NAO 
phase (as identified from the NAO index-Fig. 12(b)). An ENSO+ skill is estimated by 
averaging the correlation between the observed and forecast fields for the years of warm 
ENSO phase. The spatial structure of this skill is shown in Fig. 13(a). A similar ENSO- 
skill is computed by averaging over years with cold ENSO conditions. This is shown in 
Fig. 13(b). 

The distribution of the skill for positive values of the NAO index (NAO+ conditions) 
and for negative values of the NAO index (NAO- conditions) is represented in Fig. 14. 
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Figure 14. As Fig. 13, but for the North Atlantic Oscillation (NAO) positive and negative phases. 

During NAO+ conditions the best values of the skill are found in the central North 
Atlantic, whereas during the NAO- years the predictability is shifted to the north-east. 

Figure 15 gives a clue about the decadal dependence of the skill. We have repre- 
sented a running correlation calculated at every step from a 12-year-long section for the 
period 1958-1998 between the Na03 index and the NAO index. These correlations have 
been computed so that each of the 12-year frames is always coincident with the one of 
the training samples employed to forecast the 1970-1998 interval. Labels on the x-axis 
in Fig. 15 indicate the starting years of the segments when the initial month used to cal- 
culate the correlation is January. For example, the ordinate for the first point corresponds 
to the correlation computed from January 1958 to December 1969 {labelled 1958), the 
second one corresponds to the correlation taking from January 1960 to December 1972 
(labelled 1960), and so on. The 12-year segment is progressively displaced so that the 
ordinate for the last point corresponds to a correlation estimated from 1987 to 1998. 
Segments beneath the axis indicate the forecast period whose training samples are con- 
tained within the time interval in the axis. The correlations summarize the information 
about the coupling between the NAO and ENS0 that is included in the training sample 
used to make the forecast. We see that, although the values of the correlation are low, 
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Figure 15. The twelve-year cunning correlation between the Niiio3 index and the NAO index (see text). The 
calculations were carried out from January 1958 to December 1998 taking 12 years for each of the calculations. 
The horizontal axis indicates the first temporal point of each 12-year frame. Segments beneath the x-axis indicate 

the forecast period whose training samples are contained within the time interval. 

there is an important peak in the 1976-1988 and 1977-1989 periods when the coupling 
between ENSO and NAO was stronger than normal. We postulate that this anomalous 
situation can affect the forecast in the 1980s, due to an abrupt change in the information 
contained in the training sample. However, for the 1990s, the relationship between the 
relative phases of the ENSO and NAO signals seems to remain almost constant. This 
is further supported by visualizing the errors of the forecasts against the running corre- 
lation (not shown). In all four domains used throughout this study the largest forecast 
errors appear when there is a contrast between the relative phases of the ENSO and NAO 
in the training sample and the relative phases in the forecast period. 

(c)  Sources of predictability 
The spatial and temporal scales responsible for the forecast skill can also be 

investigated. All of the first and second singular vectors used as predictors (hereafter 
denoted by v1 and v2) for each forecast in our first experiment were saved. We proceeded 
likewise with the corresponding singular vectors of the predictand field (hereafter u1 
and u2). These patterns account for roughly 36% and 20% of the total variance of the 
predictand field. Then we carried out a cluster analysis on each set of the patterns v1,  v2,  
u1 and u:! based on principal component analysis. By this means, patterns are grouped 
according to the principal vectors (classes). Only the first three classes within each of 
the four sets were considered. The spatial patterns representative of these classes for the 
first singular vectors are shown in Figs. 16(a), (c) and (e) for the predictor v1 vector 
and Figs. 16(b), (d) and ( f )  for the predictand u1 vector. By projecting the patterns in 
Fig. 16 onto the original fields we obtain the time coefficients that give their temporal 
evolution (not shown). The first of these clusters is important in the forecasts of the 
mid 1970s, and reverses sign during the 1990s. The second cluster is important through 
the 1980s and 1990s, while the third is important only during the early 1970s. Notice 
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Figure 16. The spatial patterns representing (a) and (b) the first, (c) and (d) the second and (e) and (f) the 
third cluster of the first singular vectors. The left-hand panels show the sea surface temperature anomaly patterns 
(predictor vectors). The right-hand panels show the 850 hPa air temperature anomaly patterns @edictand vectors). 
The clustering analysis is carried out on the 348 first singular modes obtained from each of the singular-value 

decompaGtion calculations. 

how, on some occasions, the predictor structure is mostly bipolar (cluster 1, Fig. 16(a)), 
while the predictand response bas a bipolar structure (cluster 1, Fig. 16(b)). On other 
occasions it is just the other way round (cluster 2, Figs. 16(c) and (d)). 

The power spectra (not shown) of the time coefficients of the first, second and third 
cluster of the first singular vectors for the SST anomaly fields present significant peaks 
at biennial and ENS0 related timescales (3-4 years and 7-8 years). Time coefficients 
of the first, second and third cluster of the first singular vector of the air temperature 
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anomalies, besides the biennial and ENS0 related time scales, show a significant 
decadal peak (15-20 years). A spectral peak at frequencies corresponding to decadal 
timescales can also be found in the corresponding oceanic time series, but is not 
statistically significant. The spectra of the time coefficients of oceanic and atmospheric 
fields for the clusters of the second singular vector show fully correspondence in their 
significant peaks. 

6 .  DISCUSSION 

We present some forecasts for the interannual variability of 850 hPa air temperature 
anomalies at timescales greater than eight months. These timescales account for more 
than 60% of the total interannual variability of this field, and for only 20% less 
variability than its seasonal average, taken as the target of other mid-latitude empirical 
forecasts (Johansson et al. 1998; Shabbar and Barnston 1996). On the other hand, the 
skill of forecasts obtained here is more than 20% larger than for these forecasts. 

Forecasts were issued for each month from 1970 to 1998. The performance of these 
forecasts is assessed in terms of the correlation skill between the forecast field and the 
predictand one (the filtered 850 hPa air temperature anomaly). To be significant, values 
of the forecast skill are required to be above those of the artificial skill, the latter being 
estimated from a Monte Car10 experiment. The artificial skill of the forecast is also 
tested from a cross-validation experiment, where only the year targeted in the forecast 
is excluded from the training sample. To be useful, the values of the skill are required 
to reach at least 0.6. The LEPS scores give another measure of the usefulness of the 
forecasts. 

Different predictor datasets, oceanic and atmospheric, have been tested. From these, 
the SST anomaly over the North Atlantic basin is the field that performs best. Large- 
scale SST anomalies are generated by atmospheric forcing. This atmospheric high- 
frequency forcing has no predictability. The large-scale SST anomalies force, in turn, the 
atmosphere through turbulent surface heat fluxes. This explains why the SST anomalous 
state is a skilful predictor of the interannual atmospheric anomalies. The atmospheric 
damping of SST anomalies arises through air-sea interaction that is captured by our 
SVD scheme, and is the origin of the forecast skill. 

The spatial distribution of the skill presents important values in the subtropics 
(centred on Bermuda) and related regions like the Mediterranean or in the western part 
of the North Atlantic gyre (near the Iberian peninsula). Only in the last of these regions 
does the skill beat the persistence one. The forecasts presented here can be useful for 
those regions. In another region of great interest for the European climate, the region 
around Iceland, the skill is statistically significant but not high enough to be useful. 
Finally, in the region around the Labrador peninsula the forecasts show little or no skill. 
Through complementary experiments it has been shown that the forecast skill of the 
northern regions cannot be improved appreciably, either by a small displacement of the 
boundaries or by a change of predictor field. Also, we have established the robustness 
of our results with respect to changes in the forecast lead. 

The fact that our forecasts show almost no ability in regions of the USA and Canada, 
where other statistical forecasts do not lack skill, could be due to the differences in the 
treatment of the observations in obtaining the predictor and predictand fields, rather than 
to differences in the statistical method or to differences in the predictor and predictand 
domain. The important spectral peak corresponding to timescales of eight months and 
lower, which have been removed from the predictor field, is a feature of the higher 
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latitudes that is related to the seasonal signature of the anomalies (Deser and Blackmon 
1993). This explains the lack of skill for those regions. 

In other empirical predictions for the northern hemisphere (Shabbar and Barnston 
1996; Vautard et al. 1998; Johansson et al. 1998) there is an important seasonal de- 
pendence of the skill, winter being the best forecast targeted season. In the present case, 
spring also seems to be the worst forecast season, whereas winter has higher skill scores. 
These seasonal variations in skill are connected with the seasonal recurrence of SST 
anomalies in the mixed layer (Namias and Born 1974) and with the advection of such 
anomalies. In spring, when the mixed layer is becoming more shallow, SST anomalies 
can be subducted and persist in the seasonal thermocline until the following winter, 
when the mixed-layer thickness reaches its maximum value. This mechanism explains 
the high values of the skill in region 1 that is characterized by a thick thermocline and the 
absence of currents. The skill in region 2 could be due to the advection of the resurfaced 
anomalies (Garcia Ortiz and Ruiz de Elvira 1995). The features associated with the 
above-mentioned seasonal signature present a biennial timescale of variability. 

A part of the forecast skill is undoubtedly due to the ability of our model at capturing 
the ENSO (warm) signal in the subtropics. During the warm phase of the ENSO 
(Fig. 13(a)), the region of good forecast skill (above 0.5) covers an extended region over 
western Europe and eastern Greenland. During the cold phase of the ENSO (Fig. 13(b)), 
this region recedes to the south of 45"N, while the skill over the Mediterranean region 
improves. There is also an enhancement of the skill in some of these regions when the 
NAO is in its positive phase in comparison with what happens during the negative NAO 
phase. For western Europe, for instance, the improvement in the skill for the ENSO 
occurs during the NAO+ conditions. 

The change in the relative phases of the ENSO and NAO is a possible explanation for 
the loss of skill during the 1980s. When the two signals are in phase in both the training 
sample and the period being forecast, as in the 1990s, the predictability over the North 
Atlantic is considerably enhanced. Of course, there are other explanations for the lack 
of predictability, for instance the reduced length of the training period. Nevertheless, 
we have already mentioned that the skill worsened when 20 years were included in the 
training sample. This is the maximal training-sample length that enables us to forecast 
the 1980s and the 1990s. To capture the quasi-decadal timescales at least 60 years of 
training-sample length would be necessary. 

The cluster analysis of each of the first two singular vectors used for the forecast 
shows that the skill is related to the ability of our model to capture the interannual 
variability at biennial, and also at ENSO, timescales. The biennial timescales, as well 
as the seasonal dependence of the forecast skill, point to physical mechanisms for the 
re-emergence of the anomalies. The ENSO timescales, as well as the spatial pattern 
of the skill in the subtropics, are evidence of the ability of the model at capturing the 
ENSO signal as the other origin of the forecast skill. The spatial structure of the skill 
(Fig. 7(a)) is reminiscent of barotropic waves responsible for the tropical-extratropical 
interactions. On the other hand, the evolution of the anomalies in the two 'case studies' 
can be related to the advection of the anomalies along the North Atlantic gyre, connected 
with decadal timescales (Halliwell 1997). 

Lastly, the LEPS scores computed between the yearly means of the observations 
and the forecasts, provide evidence that, at the present state of the art and in terms of 
real observations, the forecasts are only meaningful for yearly-mean values in a region 
surrounding Bermuda, Although they are skilful in other regions, an important part of 
the observed anomalies near Bermuda is linked to the timescales of variability below one 
year. These are overlooked by the statistical procedure followed here, since it focuses 
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on longer timescales. We think that a statistical down-scaling would allow us to account 
for this variability. A probabilistic formulation of this down-scaling is being considered. 
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