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Abstract 

Here we study the low-frequency variability of the tropical Indian and Pacific basins with 
a new statistical technique, Bayesian oscillation patterns (BOP). To describe the climatic 
system in this region, zonal wind and sea surface temperature (SST) are the selected 
variables. Their variability can be explained in terms of a reduced number of frequencies 
and spatial patterns. These are identified for each field by a statistical procedure. With the 
help of the patterns and the frequencies a predictive scheme is devised and applied in two 
forecast experiments. In the first, zonal wind anomalies are predicted using patterns and 
frequencies identified in the wind field. A more sophisticated scheme, a linear model which 
includes non-harmonic oscillations and interactions between patterns, is used when forecast- 
ing SST seasonal anomalies in the Nifio3 region. In this case, the predictors include the 
values of the frequencies identified in the BOP analysis of both wind and SST fields, and 
the corresponding patterns. 

I. Introduction 

In the anomalous  climatic variability that  takes place in the tropical Pacific 
basin known as E N S O  (El Ni f io -Southern  Oscillation), two features are relevant. 
One  is the magni tude  of  the atmospheric  and oceanic anomalies,  and the o ther  is 
the quasi-periodicity of  the phenomenon .  The first determines  the impor tance  of  
the climatic signal on the global scale, whereas  the second points to the possibility 
of  predicting it. E N S O  occurs at t ime intervals between 2 and 8 years. Such a 
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considerable time span points to the need for more than one time scale to describe 
and predict the phenomenon. 

The need for several time scales to explain ENSO variability had been noted 
already in the pioneering work of Kidson (1975). When anomalies of sea level 
pressure (SLP) and sea surface temperature (SST) in the region were analysed in 
terms of empirical orthogonal functions (EOFs), the time coefficients or principal 
components of the first few EOFs did show important spectral peaks for a limited 
number of frequencies. Owing to the short length of the records, the significance 
of these peaks could not be easily assessed. Furthermore, there was the problem of 
the ambiguity of the response when statistical tests (Preisendorfer, 1988) aimed at 
determining the number of relevant EOFs are applied to observed climatic 
records. As has been pointed out (Barnett, 1991), conventional spectral analysis 
may not be strictly appropriate for studying ENSO variability. 

Principal interaction patterns (PIP) and principal oscillation patterns (POP), the 
statistical techniques proposed by Hasselmann (1988), are an alternative to the 
classical identification of relevant frequencies by means of Fourier analysis. In the 
PIP (or POP) technique a first selection of a subspace of interest in the space of 
field variables is performed by means of EOF analysis. This is a separation based 
on an energy criterion. Although the first few EOFs may pick the most energetic 
phenomena, it is difficult to separate noise and oscillations in the next EOFs. To 
determine the relevant frequencies and patterns of variability via the POP analysis, 
the time series must satisfy the hypothesis of being a realization of an auto-regres- 
sive process of order n (AR(n)) driven by white noise. 

The POP scheme has been applied to the prediction of the Southern Oscillation 
(Xu and Von Storch, 1990) using observed SLP data, and of ENSO (Latif and 
Fliigel, 1991), using the output of a general circulation model (GCM) for the 
region. Predictive schemes based on the POP analysis retain usually only one of 
these frequencies and a pair of patterns. When dealing with observed climate time 
series (very noisy), this reduction of the number of degrees of freedom of the 
system is arbitrary. 

Other statistical techniques used for the identification of the relevant time 
scales present in ENSO variability give a more complex view. For instance, 
Rasmusson et al. (1990) used singular spectrum analysis (SSA) to study ENSO 
variability in the wind field of the tropical Indo-Pacific region. They found that the 
spectra contained both a biennial oscillation and also a signal in the band of 48-60 
months. The latter signal, however, was more difficult to identify than the former. 
Similar results were obtained by Lau and Sheu (1988). SSA does not assumes an 
AR(n) form, but implies an infinite and ergodic time series and needs several 
strong assumptions on the nature of the noise. Moreover, as with any method that 
extracts information from eigenvalue analysis of matrices obtained as samples of 
some hypothetical ideal multivariate time series, there are problems with the 
assigning of the largest eigenvalues to the signal and with the degeneracy of 
eigenvalues. 

Although SSA performs better than the traditional Fourier analysis at separat- 
ing closely spaced relevant spectral peaks, SSA does suffer some of the problems 
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connected with this analysis, such as the requirement of stationarity and the 
limitation to situations of high signal-to-noise ratios. Besides, techniques related to 
spectrum analysis share a problem when applied to short time series with noise. 
The problem is that it is rather difficult to decide if a peak in the spectrum is real 
or if it is a consequence of the short length of the series and the presence of noise. 
Furthermore,  interesting signals may occur with less energy than the noise, so a 
separation into EOFs is, at the very least, doubtful. 

In the problem we address here, the question is not so much to determine the 
spectrum of a time series, but to locate some low-frequency signals possibly 
embedded in the data. The problem is then no longer one of spectral estimation 
but one of what Marple (1987) called 'parameter  estimation method'.  

The Bayesian signal analysis (BSA) we use here is not restricted to time series 
of special characteristics or to white noise. BSA is designed as an optimal method 
to use for analysing short time series and can work with signal-to-noise ratios as 
low as 0.6. In BSA no hypotheses are made about the actual series belonging to 
any hypothetical ensemble or infinite series. Only the data at hand are used, and 
the question addressed is: What is the probability of some a priori signals being 
contained in the data? As we are asking about probabilities, we have the advantage 
that we can obtain a measure of the accuracy of our estimates, which the 
least-squares method does not give at all, and which maximum likelihood gives via 
a complex procedure not related to the specific data set at hand. 

BSA is a development of Jaynes' Bayesian methods (Jaynes, 1985), which have 
been applied to statistical mechanics, quantum electrodynamics and statistics. 
Their  main use has been in image reconstruction problems and astrophysics (see 
Justice (1986) and references therein), modelling systems whose structure changes 
in time (dynamical modelling), and in applications to econometrics and Kalman 
filtering (Spall, 1988). In particular, BSA is an application of Bayesian methods to 
spectrum analysis (Bretthorst, 1988). The determination of Bayesian oscillating 
patterns (BOP) by using BSA (Bayesian spectrum analysis) was proposed by 
RuizdeElvira (1993), who applied it to an analysis of the chaotic solution of the 
nonlinear equation of Franceschini and Tebaldi (1989). It was shown by 
RuizdeElvira that although Fourier analysis of the solution indicated the presence 
of a fundamental frequency and its three odd harmonics, a reconstruction of the 
solution using these four frequencies failed to reproduce its characteristic be- 
haviour. On the other hand, BSA could fit this behaviour very well. 

In the present paper, the BOP analysis is applied to real climate data. Time 
scales and patterns relevant for the evolution of ENSO are determined. We obtain 
a measure of the precision of the time scales, and an improvement in the hindcast 
skill for the analysis of wind and SST anomalies in the Indo-Pacific region with 
respect to other techniques. Other relevant questions tackled here include propa- 
gation of the signal between basins and correlation between wind and SST. An 
indication of the performance of the method is inferred from the success in the 
forecast. 

Details of the statistical method are given in Section 2 and completed in the 
Appendix. The results of the application of this technique to the analysis of 
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observed data (zonal wind and SST) appear in Section 3. In Section 4, we describe 
the forecast procedure, with details of the first forecast experiment (zonal wind) in 
4.1, and of the second experiment (SST in the Nifio3 region) in 4.2. Conclusions 
are presented in Section 5. 

2. Bayesian oscillation patterns 

As we have already mentioned, for short time series including noise, the 
procedure that is optimum in the sense that it does not throw away any informa- 
tion present in the series, and does not require exclusively harmonic oscillations, is 
BSA (Jaynes, 1987). This method can be used without any previous reduction of 
the degrees of freedom of the system, and, for an a priori chosen model, 
determines both the number of significant signals and the parameters of the model 
that maximize the probability of the model fitting the data. 

Bayesian methods include both maximun likelihood estimation, (MLE), when 
using uniform priors, and least squares estimation, when we can assume that the 
noise is Gaussian. However, the Bayesian methods are superior to these two 
techniques, as the Bayesian methods allow for non-uniform and informative priors 
when these two are needed (as in the case of the prior for the variance ~r), their 
treatment of non-interesting parameters (nuisance parameters) is very easy, and in 
their framework it is straightforward to obtain the precision or confidence intervals 
in the determination of the parameters. Furthermore,  in Bayesian analysis one 
uses exclusively the data at hand, and there is no need to make complicated 
arguments about the plausibility that a model has high probability for producing 
the data, as in the MLE. Indeed, if we propose a certain model and we obtain a 
probability of, say, 0.98 that a parameter  b has the value b0, as compared with 
probabilities lower that 0.4, say, for all other values, we can easily accept that this 
value b 0 is the correct one for the parameter.  

To apply Bayesian techniques we need to define the possible models we would 
like to test for the presence of some signals in the data. These models should be 
oscillations (harmonic, anharmonic, elliptic or Bessel functions, etc.), as pertains to 
solutions of the Navier-Stokes equations. 

If we have data at the n points of a (possibly irregular) grid, depending on time, 
d(ti), a common supposition in statistical modelling is that these data can be 
modelled as a regular part and noise: 

d(ti)  =m(t i )  + noise; i =  1 , . . . , m  (1) 

N 

m(ti)  = ~_~a~Gv(ti;{~o}) (2) 
u 1 

where {w} is the set of parameters of the model, d is the n-dimensional data 
vector, and m the n-dimensional model vector. The N spatial coefficients a~ are 
n-dimensional vectors, which will be called patterns, the N functions G~ are the 'a 
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priori' model functions, and the 'noise' is all that part of the variability of the data 
that we are not interested in modelling. 

To focus on a particular case, we would like to understand a set of n time series 
representing some multivariate climate data as a superposition of a (small) number 
of spatial patterns, each pattern oscillating with a fixed time scale (RuizdeElvira, 
1993). In this case, the parameters {to} are frequencies. As an example, the model 
that we will propose for the zonal wind is 

N N 

m( ti) = Y'~avcos( to~ti) + bvsin( tovti) + cos(toati) E (c~cos( tovti) 
~, 1 v--I 

+ f~sin(w~ti)) (3) 

that is, harmonic oscillations modulated by the annual cycle. Here toa denotes the 
annual angular frequency and the n-dimensional vectors a~, b~, c~ and f~ are the 
Bayesian oscillation patterns (BOP). Patterns c~ and f~ are the cyclostationary 
corrections to patterns a~ and by. As we have already indicated, what we 
understand by noise is not only statistical noise (in physical terms, turbulence, as 
our data are wind velocities, i.e. fluid motion), but also some other terms that we 
choose to disregard for the time being. 

As is shown in the Appendix, the probability for the set of parameters {to}, given 
the data, is 

1 'N-m'j2 P({to} ]d) ~ 1 - ~ - ~ ]  (4) 

where 

_ _  1 l n U 

h2 - N ~  k ~" h2" (5) 
n = 1  v = l  

- -  1 1 n m 

d 2 -  E ~ d2 k,, (6) 
n m k =  1 t i = l  

and hk~ is the projection of d onto a linear combination of the model functions G. 
For different values of {to} (4) gives different numbers. The optimal parameters 

{too} are chosen as those for which probability (4) is maximum. 
Less straightforward is the criterion to decide the order N of the model. We 

have used an empirical iterative procedure analogous to the Monte Carlo method. 
First we created l (1 = 1000) time series as a superposition of harmonic signals with 
r frequencies and noise of different statistical characteristics. The signal-to-noise 
ratios of these series varied between 2 and 0.3. 

To determine the number N of harmonic signals contained in the time series (N  
should equal r), we calculate lnP  for frequencies between (2 month) -1 and (222 
month) -1, using Model (2) with only one harmonic signal: Gl({to},t)= cos(tot). 
These frequencies correspond to our 444 month long time series of monthly 
averaged data. We identify the frequency that maximizes lnP, hereafter called 
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tomax" We look for all frequencies to for which lnP(to)>~/31nP(tomax). For the 
above synthetic series we find that for signal-to-noise ratios greater than 0.6, we 
can recover the original r frequencies when/3  is greater than 0.5. 

Now we apply the criterion to the time series of real data for each grid point. 
First we select N '  relevant frequencies with Model (2) and N = 1. Then we use 
Model (3) with N '  harmonic signals corresponding to these frequencies, and 
determine the signal-to-noise ratio following (A16). For all grid points of our 
analysis the value of the signal-to-noise ratio exceeds 0.7. Therefore  we feel 
confident that the a priori model can be accepted with N '  signals. 

3. Data and results of the analysis 

The data used here consist of 98 time series of surface zonal wind seasonal 
anomalies over the tropical Indian and Pacific Oceans and 98 time series of SST 
seasonal anomalies. Both series comprise 37 years of monthly averages from 1950 
to 1986. The wind data set was constructed by T.P. Barnett  from several sources 
and has been described by Barnett  (1983). The SST data are from the Comprehen- 
sive Ocean-Atmosphere  Data Sets (COADS) (Fletcher et al., 1983) from 1950 to 
1986. Both data sets were kindly provided by T.P. Barnett. 

The original grid points of zonal wind and SST do not coincide. Therefore,  an 
interpolation had to be performed to match both wind and SST data to the grid 
points represented in Fig. 1. No other manipulation or filtering was performed on 
the data. 

3.1. Zonal  wind 

As the seasonal dependence of wind anomalies is important, we used Model (3) 
including a cyclo-stationary dependence. The optimal model is obtained for six 
frequencies corresponding to time scales T = {19,23,26,43,59,73} months. 

3O 
9o 91 92 9~ Q4 9si -"6 97 -"8 

t 
2 0  
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Fig. 1. Grid points for data and model in the Indo-Pacific basin. 
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Among these are a quasi-biennial oscillation and a 5 year oscillation. The 
patterns corresponding to the 5 year time scale show the maximum probability 
P({w}l d) (Eq. (4)), and carry the maximum variability. 

Some of the patterns corresponding to these time scales can be understood in 
terms of stationary oscillations, whereas others, as for instance the patterns 
corresponding to the 5 year time scale, can be understood as propagating oscilla- 
tions. The six double pairs of patterns account for 38% of the field variance. The 
signal-to-noise ratio is 0.8. 

The significance of the model can be assessed using several techniques. A good 
measure is obtained from the consideration of the joint probability distribution of 
the estimated model coefficients (Barnett and Hasselmann, 1979). If, for each grid 
point, we collect the N estimated model coefficients into an N-dimensional vector 
ti and the true coefficients into a t, then the probability distribution that the 
coefficients have a value fi + d~i, given a t, is approximately Gaussian: 

P (  ~i I at)d~i = (2~- ) -n /21MI- l /2exp( -p2 /2 )d f t  (7) 

where the statistic p2 is given by 

p2 =_ ~ Mi-~l~ai~aj (8) 
i,j=l 

Mij -- (~ai6aj)  (9) 

and 

~ai =-- ai -- a~ (10) 

are the differences between the determined coefficients ~i i and the unknown true 
values a~. We can test if there is a significant probability that the true values are 
zero. As in this first study we have assumed an uniform prior probability for the 
parameters a~, in this case the probability p ( a t l ~ ) d a  t is numerically equal to the 
likelihood P(~I  a t ) d ~  (Appendix A). 

Then, given the estimated coefficients ~ii, we substitute a~ = 0, i = 1 . . . . .  N into 
(10). In this case 6ft  i are simply equal to ~i- We will obtain a high probability that 
a~ = 0 if p2 is small. Indeed, the distribution of p2 is really a Hotelling distribution, 
as M, the covariance matrix for the coefficients, must be estimated from the data. 
However, for reasonably large N (as is the case here), this distribution can be 
approximated by a Xzu distribution with N degrees of freedom. We are testing for 
N = 24 degrees of freedom (four coefficients for each of the six frequencies). The 
X 2 95% confidence level for 24 degrees of freedom is 36.42. 

In our case, we find an average across grid points of ~ of 206, with a minimum 
of p2=  70, a maximum p2=  408. We conclude that for all the grid points, the 
probablity that the parameters a i are zero is negligible, and therefore that the 
model is significant for all points. 
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The errors for the estimated time scales (in months), determined using (A19) 
are: 

T 19 23 26 43 59 73 
AT 0.35 0.46 0.41 0.80 1.1 3.0 

The patterns accounting for the maximum variance are the four corresponding 
to the time scale of 59 months (stationary and cyclostationary correction). The 
evolution of the stationary patterns of this set is represented in Fig. 2. Assuming 
that for t = tin , the state of the system can be represented by Pattern 1 (lower 
left-hand corner), then at t = tin + T / 4 ,  (15  months later) the field is represented 
by Pattern 2 (upper left-hand corner). At t = ti n + T / 2 ,  (30 months later) the field 
is represented by minus Pattern 1 (upper right-hand corner), and for t = tin + 3 T / 4  
(44 months later), by minus Pattern 2 (lower right-hand corner). 

This sequence represents the propagation of a signal (positive wind anomalies) 
from the south equatorial Indian Ocean to the north equatorial western Pacific 
Ocean, then to the equatorial central Pacific Ocean, where it becomes amplified, 
and finally disappears during the last 15 months of the 59 month cycle, after which 
it starts again. 

A further indication of the model performance can be obtained through a 
hindcast of the data. Two graphical comparisons of model hindcast with data are 
noteworthy. The first is a series of snapshots between August 1982 and May 1983 
(Fig. 3). Prominent features in the data (right panels) are the large positive 
anomalies in the equatorial western Pacific in August 1982, the eastward propaga- 
tion of these anomalies during the following months and the damping of the 
anomalies in May 1983 (the anomalies disappear some months later, not shown). 
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Fill. 2. Evolut ion sequence fo r  the BOP stat ionary pat tern o f  the zonal wind corresponding to the t ime 
scale o f  59 months. M in imum value: -($.8 m s - i  maximum: 4.25 ms-1. Contour  intewa]: ] m s-1. The 
sequence  is lower left, upper  left, upper  right, lower right. 
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Fig. 3. Snapshots of the zonal wind for the interval summer 1982 to spring 1983. Right panels: data. 
Left panels: BOP model. Minimum contour: -3 .5  m s - l .  Maximum contour: 4.5 m s - i .  Contour 
interval: 1 m s ~. 

These features are well known, and indeed have been modelled by a variety of 
methods, some statistical, some dynamical. In all of these methods, the hindcast 
starts with known conditions around January 1982 and follows the evolution for 24 
months. 

The model snapshots (Fig. 3, left panels) represent the model evolution with 
initial values in January 1950. We point out the appearence of a positive anomaly 
in the west equatorial Pacific in August 1982, its propagation to the central 
equatorial Pacific in February 1983, with the generation of negative anomalies in 
the Indian Ocean, and the final weakening of the anomalies in May 1983. The 
hindcast captures the most important features of the data evolution. 

The second graphical comparison is a t ime-longitude diagram of the equatorial 
band of the basin. As before, the model evolves from 1950. We have plotted (Fig. 
4, left panel) the time interval 1969-1987. If we compare the model evolution with 
the data (Fig. 4, right panel), we can see that the appearance and subsequent 
eastward propagation of positive wind anomalies in the model in years 1971, 1976, 
1982 and 1986 closely follows the data. An interesting feature to notice here 
concerns the propagation of the anomalies from the Indian Ocean to the Western 
Pacific prior to the start of the events. This propagation seems to be connected 
with the pattern associated with the 59 month time scale, and appears in the 
analysis as a common feature for all events, whereas it appears only in some of the 
events given by the data. We conclude that the model captures some significant 
features of the evolution of wind anomalies in the Indo-Pacific basin, and that 
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therefore these features can be understood as a sequence of coupled oscillations, 
as is proposed in this model. 

3.2. SST anomalies 

The analysis proceeds along the same path as for the U-wind case but, as 
tropical SST are less sensitive to the seasonal cycle than the winds, the a priori 
model does not include the annual cycle modulation: 

m2( t ) = ~ a~cos( t%t ) + b~sin(to~t) (11) 
v = l  

Errors and statistical significance have similar values as in the U-wind field case 
and the model is validated in all the region. The time scales found are: T =  
{21,25,34,42,59,73} months. If we take into account the margins of error in their 
determination, the only significant difference with the U-wind case is in the time 
scale of 34 months. 

We conclude that the coupled ocean-a tmosphere  system in the Indo-Pacific 
basins exhibits fluctuations on time scales of both 2 and 5 years, as was expected 
from earlier studies. Such long-time scales can be physically explained only if 
thermodynamic processes involving energy exchanges between air and sea are 
present. 
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Fig. 4. T ime- long i tude  diagram for  the zonal wind in a band around the Equator.  Right  panel: data. 
Lef t  panel: BOP model. M in imum contour: - 3 . 6  m s ]. Max imum contour: 4.5 m s -~. Contour  
interval: 1.2 m s - 1  
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3.3. Relationships between fields 

To study the relationship between SST and zonal wind fields, time lag cross-cor- 
relations are computed between the modelled time series. Two regions, one with 
36 grid points for the SST and another with 28 points for the zonal wind, show an 
absolute value of the correlation greater than 0.4 for some time lags (Fig. 5). The 
maximum correlation is obtained when the wind lags the SST by 1 month; there is 
appreciable correlation until 9 months, and between 28 and 36 months, which is 
not surprising owing to the periodic nature of the model. 

The existence of several time scales with nearly equal values points to the 
presence of nonlinear oscillations in the system. The possibility of nonlinear 
interactions between oscillations with different time scales has been explored 
before (Barnett, 1991). To look at this possibility, four additional functions have 
been included into the model m z. These functions are the products of the 
harmonic functions whose patterns account for the greatest variance for each field 
(those of 59 and 42 and 23 months, i.e. G59,42 G( [cos(0959t)cos(0942t)] , etc.). 

The peaks in the time correlations between patterns are -0 .57  for the patterns 
in zonal wind and SST corresponding to G59,42, and -0 .20  for the G59,23 pattern. 
The regions for which the patterns show correlation in the case G59,42 are 
indicated in Fig. 6. This correlation is obtained between grid points displaced 10 ° 
with the U-wind to the east. 

4 .  F o r e c a s t  

By 'forecast '  we understand the prediction of the evolution of a field in a region 
of the basin for the time interval t i to tf using an a priori model, whose 
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and zonal wind seasonal anomalies (circles). 
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Fig. 6. Regions  of  significant correlat ions (nonl inear  model)  be tween SST seasonal  anomalies  and zonal 
wind seasonal  anomalies.  Circles denote  the G1 function,  asterisks the G2 function (see text). 

parameters are determined using the data from the first point of the series, t o , to 
t i - 1. Once the model parameters are determined and the patterns are calculated, 
the model is left to evolve in time from t i to t i. A final test of the goodness of any 
statistical model is its ability to forecast. The dynamics of the system force 
oscillatory solutions, but random forcings must produce unexpected phase dis- 
placements. Can our model capture these displacements? 

4.1. Forecasting the zonal wind 

We forecast the zonal wind using Model (3). The predictand is in this case the 
zonal wind at a grid point, and the predictors are the zonal winds at all grid points 
in the basin. Our forecast experiment for the zonal wind consisted of predicting 24 
months of wind at every grid point, with three starting times ti: January 1983, 1984 
and 1985. Using the 98 time series between 1950 and each of these starting times, 
we determined the time scales of oscillation of the wind in that period. To deal 
with the phase problem, we determined the patterns by fitting the model with 
these time scales to the data in the 4 years previous to t i. We then used patterns 
and model functions for the 24 months following t i. In Fig. 7 we show the result of 
the forecast for two grid points, and for the forecast periods 1985-1987 and 
1986-1988. 

The criterion used to calculate the skill of the forecast is based on the relative 
error between prediction and data weighted by a cut-off function. The inclusion of 
this weight function is justified by our interest in forecasting large departures from 
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Fig. 7. Two instances of zonal wind forecast. Upper panel: grid point at 25°S,105°E; lower panel: grid 
point at 5°S,85°E. Forecast starts at the vertical line. 

the norm rather than small values of the anomalies. Therefore the relative error  ~'irk 
for each lag i and each grid point k is estimated by 

eirk= [ 1 -  e x p ( - 4 z / 2 ) ]  ( m ' k - - d i k ) 2  
d2 k (12) 

where 

Z i = d i / D i ,  D i = max( dik ) (13 )  

The weighted relative error, averaged across the 98 grid points and the three 
forecast intervals, is shown in Fig. 8(b), together with the more usual correlation 
skill (Fig. 8(a)). To estimate the significance of this measure we will assume that 
neighbouring grid points are correlated, and therefore we can consider a sample of 
9 8 / 4  independent points and three independent time intervals, giving us a value of 
0.21 above which correlation skill can be considered significant at the 95% level. In 
this case, though low, the skill of the forecast is significant for 24 months whereas 
persistence is not significant after 3 months. 
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Another indication of the ability to forecast is given by the timelag longitude 
diagram for some of the latitude bands (Fig. 9). Here we can see that at some 
points the correlation skill reaches rather high values for considerable time lags. 
The dynamical causes of this are unknown, but its implications seem worthy of 
further research. 

4.2. Forecasting the Ni~o3 anomalies 

We have performed an experiment of forecasting the Nifio3 SST anomalies for 
36 months starting at each season from January 1963 to October 1983, and 
including the year 1956. Only in this case, and to help to solve the phase problem, 
the predictor time series were bandpass filtered retaining time scales between 10 
and 84 months. Both zonal wind and SST were used as predictors and we choose 
the following a priori model: 

m3( t ) = ~a~cos( to~t  + ~b~) + bicos3( toi t + i~i ) (14) 
v 

where the parameters to~ were determined as above. 
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Fig. 9. Time lag-longitude diagram of the correlation skill for the zonal wind forecast using the BOP 
model in the 5°N band. Upper panel: persistence. Lower panel: BOP model. Minimum contour 
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The  model  was chosen as the simplest  one that  uses not  only pure  harmonic  
signals, bu t  also includes signals s teeper  than  harmonics ,  to improve the model l ing  
of the sharp rises at some intervals in the SST series and improve the forecast over 
that  ob ta ined  using pure  harmonics.  This model  appeared  in an analysis of the 
solutions to the equat ions  of the dynamical  system proposed by Franceschin i  and 
Tebald i  as men t i oned  in the In t roduct ion .  The  pa t te rns  selected following the 
cr i ter ion of Section 2 and  de te rmined  using the data  prior to the forecast start ing 
t ime t i are the ones used as predictors.  The t ime scales selected for each forecast 
varied in n u m b e r  be tween  one  and six, and  the signal-to-noise ratio in the model  
de te rmina t ion  varied be tween  1.3 and  0.71. Therefore ,  and for each forecast, the 
model  used to ob ta in  the predictors  was validated.  

Resul ts  of five forecasts are p resen ted  in Fig. 10. Three  of these forecasts 
correspond to the canonical  cases proposed by Latif  et al. (1994). The  forecasts 
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Fig. 10. SST anomalies forecast for the Niho3 region. Forecast periods: (a) April 1956-December 1959; 
(b) April 1964-December 1967; (c) April 1968-December 1971; (d) January 1971-October 1974; (e) 
April 1980-January 1984. Long to short dashes indicate forecasts starting in spring, summer, autumn 
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started at the first month of  each of  the four seasons, spring, summer, autumn and 
winter. We can observe how after an interval of  3 months the forecast follows well 
the observed data in its oscillatory behaviour as well in its order of  magnitude, with 
evident degradation at the end of  the forecast period. 

We assess the scheme performance by plotting the curve of  forecasts for 
different values of  lead time ~-. That is, for z = 9 months,  for instance, we  plot, for 
each time t, the value predicted by the model  at time t when we use all the data 
until time t - 9 months.  In Fig. 11 we show three plots corresponding to lead times 
of  9, 21 and 36 months.  We can observe that the 1972-1973 El Nifio is rather well 
represented for lead times until 21 months,  and the representation degenerates for 
longer lead times in the sense that it is displaced by around 9 months,  though no 
large negative value obtains for this time period. For El Nifio 1982-1983 the worst 
prediction occurs between • = 15 months and z = 24 months (not shown), improv- 
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Fig. l 1. SST anomalies forecast for the Nifio3 region for three different lead times, tau. 

ing again for lead times between 2 and 3 years, but for all lead times we obtain 
peaks of the right magnitude within the interval October 1982-April 1983. 

We can conclude that the complex mechanisms that control the evolution of 
ENSO, or the solutions to the equations that represent them, are well modelled by 
a superposition of oscillations with different time scales, and that these scales can 
be determined more precisely for the 1983 E1 Nifio (with 120 more data in the 
sample) than for the 1973 event. 

In Fig. 12(a) we can see the correlation skill compared with the persistence skill. 
The latter degrades rapidly to non-significant values (less than 0.22 for a sample 
with n = 88), whereas the forecast skill is significant and very important for lead 
times up to 19 months, and can be accepted also for lead times up to 34 months 
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( for  34 m o n t h s  it is stil l  larger  than  the  crit ical  v a l u e  o f  0.22).  T h e  re lat ive  R M S D  
error exh ib i t s  a s imi lar  b e h a v i o u r  (Fig .  12(b)) .  

5. C o n c l u s i o n s  

W e  h a v e  i n t r o d u c e d  B a y e s i a n  o sc i l l a t i on  pa t t erns  ( B O P )  as a n e w  too l  for the  
d e t e c t i o n  o f  regu lar  e v o l v i n g  pa t t erns  f r o m  c l i m a t e  f i e l d s  w i t h  m a n y  d e g r e e s  o f  
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freedom, i.e. the direct application of Bayesian methods to signal detection. A 
noteworthy advantage over other methods is its ability to detect signals less 
energetic than the noise and to produce easily confidence intervals for the 
parameters it determines. 

We cannot think of this method exactly as a dynamical tool, as no evolution 
equations have been proposed. On the other hand, it has a distinct dynamical 
flavour, as it uses as the a priori model functions the solutions of the most 
standard statistical equations (AR,,, for instance) or the solutions of simple 
dynamical system equations. This method can also employ the known solutions to 
any equation that could be proposed to model the evolution of climate fields. 

The BOP method is able to resolve any type of oscillation, be it standing or 
travelling, including first- and higher-order powers of harmonic functions, and 
constructive and destructive interferences between different oscillations. As a 
Bayesian method, BOP uses only the data at hand, and in a similar way to another 
Bayesian technique, the Kalman filter, it is designed explicitly to incorporate any 
new piece of information provided by experimentation or observation. 

A BOP analysis of zonal surface wind and SST anomalies in the Indo-Pacific 
basin shows the presence of six time scales, one of them corresponding to a 
quasi-biennial oscillation and another one of approximately 5 years. The fact that 
there is a number of different oscillations produces constructive interference 
effects, causing, at irregular time intervals, increases in the amplitude of the 
anomalies. Hindcast experiments for the zonal wind in the entire basin produced 
these interferences with similar propagating characteristics and at the same times 
as the ENSO events of 1973, 1977 and 1983. 

The zonal wind pattern corresponding to the 5 year scale shows clearly a 
propagating signal originating in the Indian Ocean and propagating slowly to the 
central Pacific. This feature, which indicates a connection between the monsoon 
and ENSO, is present in data snapshots only at times prior to some of the ENSO 
events. 

A measure of the success of the method is given by the performance of the BOP 
model in forecasting. One of the forecast experiments produces good results for 
the zonal wind when we use all the data previous to the start time of the forecast 
tst for the determination of the relevant time scales; and then the 4 years previous 
to tst for an optimization in the determination of the patterns. The correlation skill 
and relative error for the prediction are significantly better than for the persis- 
tence. 

A simple model, which uses functions other than the usual first power of 
harmonic functions, and which is suggested by an analysis of the solutions of a 
dynamical system of the Lorenz class, performs well for the forecast of SST 
anomalies in El Nifio3 region up to 36 months ahead. The model uses as predictors 
both the zonal wind and the SST anomalies in the entire basin of the Indian and 
Pacific Oceans. The good results obtained in the forecast experiments (compared 
with the results of other statistical or dynamical forecasts) demonstrate the ability 
of the method when dealing with time series of actual data. The potential benefits 
offered by the introduction of informative priors seem worth exploring. 
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Appendix 

If we chose any model (consisting of a certain number of signals), the question 
is: what is the probability that the signals are embedded in the data? That  is, we 
would like to know the probability 

P ( M I d , I )  (A1) 

for Model M, given the data d and all the available information I. Here the data 
d are the time series we are actually analysing. I denotes all the previous 
information we have about the data and the experiment we are concerned with. 
For instance, the data could be time series of wind velocity anomalies. The 
previous information we have is that wind velocities follow the Navier-Stokes 
equations, that they are never stronger than 200 m s-1 at the surface, that they 
move in vortices and wave patterns, etc. 

Bayes' theorem can be written as 

P ( m l I ) P ( d I M , I )  
P ( M I d , I )  = P ( d l I )  (A2) 

(Jeffreys, 1961). Here  P(MII )  is the prior probability for the model, given the 
available information; i.e. given that the data must satisfy the Navier-Stokes 
equations, I, P(M[ I) denotes the probability of Model M consisting of oscilla- 
tions. P(d[ I) is the probability of obtaining the data from the available informa- 
tion. We can include P(d[I)  in the normalization constant for the probability 
P(Mld,I) ,  as it does not change for any model we choose. 

The posterior probability we are looking for, P(Mld,I) ,  is then the product of 
the prior probability of Model M given information I, and of the likelihood 
P(d] M,I), that is, the probability of finding the data given a proposed model, M, 
and the a priori information (i.e. that the data follow the Navier-Stokes equations): 

L(d) =-P(dlM,I)  (AS) 

To apply Bayesian techniques we need to define the possible models we would like 
to test for the presence of some signals in the data. These models should be 
oscillations (harmonic, anharmonic, elliptic or Bessel functions, etc.), as a conse- 
quence of the Navier-Stokes equations. A crucial step in the procedure is to 
determine the likelihood. We can use the MaxEnt principle (Jaynes, 1978), for the 
application of which extensive literature is available (see Kapur and Kesavan 
(1992) and references therein). 
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The difference between the model (signal) and the data is defined as the noise 
w. If  we knew the true signal, we could determine the characteristics of the noise. 
If we knew the noise, we could compute the likelihood. This not being the case, we 
are forced to assume that the noise has the most general attributes: we can assign 
a prior probability to it that is as uninformative as possible. If  we knew nothing 
about the noise but its variance or 2, the principle of maximum entropy would give 
the probability 

' ( w~ ) P(w I0-2,I) exp - - -  ( 14 )  
( 2 ~ O . 2 )  1/2 2 0  -2 

As we do not know the noise variance, we will have to integrate over this 
parameter  in the applications. 

The likelihood at time t i is the probability of obtaining one data value dr, given 
the model rot,; it is proportional to the probability of the noise being zero: 

e(d,,im,i,i) Qte(wl0-2,1) = 1 [ (dti-mti) 2 
(2~.0-z)1/2 exp 20-2 (A5) 

If we had some information about the noise (i.e. red or blue, its time correlation 
function, etc.), we could write the probability P(wt?wt2 . . . . .  Wlm) as a function of 
the individual probabilities P(wti). I f  we want to stick to the most uninformative 
probability for the sequence {wt,,wt2 ..... wtm}, we can suppose P(wtjlwt,,o-,I)= 
e(w,, [0-,I),(ti,tj), i,j = 1,..., m, 

P(dlM,0-,l)=FI( l [ (dti-mti)2]} (A6) 
(2~o.2)1/2exp 20- 2 

o r  

P ( a l  M,o-,I) ~0--m x exp - ~-5~2 . ~ ( a , , -  rn,,) 2 (17)  

Our model was proposed in Eq. (2) of the main text: 
N 

, .(ti) = 

v = l  

where {oJ} is the set of parameters  of the model (frequencies in this case). 
The likelihood for the parameters  {oJ}, can be obtained by integrating over all 

possible values of the amplitudes a v of the model. To do this, the calculations are 
simpler if we build functions H v, obtained from G~ by orthonormalization 

N 

av ( t i )  = E Cv.G~(ti) ( A 8 )  
~-1 

with 
m 

E H ~ (  ti)H~( ti) = 6,~ ( A 9 )  
i = l  
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and then project the data into these functions: 
in  

hkv- EG(ti)Hv(ti), k = 1 , . . . , n ;  v = 1 . . . . .  N (A10) 
i = l  

For the time being, as we are interested only in the generalized frequencies {o~}, 
we can substitute (A10) into (A7) and integrate over the amplitudes a~. This is 
where we could introduce previous knowledge about the amplitudes. However, in 
this first study we want to use the minimum number  of assumptions. Thus we will 
take a most uninformative uniform prior for the amplitudes. Using the orthonor- 
mal variables H,  this integration is rather  simple, and we obtain, 

( mde-Nh2 ) ( A l l )  
L({w} 1 0-,I)  (X0--m+Nx exp 2o.2 

We do not know the variance or equivalently, the standard deviation or, of the 
noise, so we have to integrate over all its possible values. To do that, we can assign 
to this variance a prior 1/0-, corresponding to a uniform probability distribution 
for its logarithm (Jeffreys, 1961). Then we can write the joint posterior probability 
for the set oJ, given the data d, as 

e({o I Id,I) 1 -  (112) 

where 
_ _  1 1 n N 

h 2=  - ~ / ~ _  Y'~h2~ (A13) 
n =1 v=l 

_ _  1 1 M d2= ~ 2 - -  - -  E dkt i  (A14)  
n m k =  1 t i=l 

The optimal parameters  oJ o are chosen as those that maximize probability 
P({a~} I d,I). 

A simple example can give us some indication about the usefulness of this sort 
of calculations. Let us suppose we have two small samples of two (possible 
different) populations: Sample 1 has N = 9, ~ = 42, s a = 7.48; Sample 2 has N = 4, 
~2 = 50, s 2 --- 6.48. It seems obvious that Sample 2 comes from a population with 
greater  mean.  Can we assign a probability to this 'obvious fact '? We want to test 
two models for the two sets of observations. The first model, for Sample 1, is that 
the average is a. The second model, for Sample 2, is that the average is b. Further,  
we assume that b > a. We write the sample average and the sample standard 
deviations as x I and s 1, x :  and s2, respectively. 

The likelihood, based on a model that specifies that the data come from a 
normal population of mean a, and standard deviation 0-, is well known, and it is 

e x p - - - [ ( x l - a ) Z + s ~  dx i (115)  P(x i l a,0-,I) (27r) n/20-" 20.2 

and similarly for mean b. 



A. RuizdeElvira, M.J. OrtizBevid /Dynamics of Atmospheres and Oceans 22 (1995) 91-114 113 

With an uniform prior P ( a l I )  and a uniform prior for the logarithm of the 
scale parameter  or, the posterior probability for the mean a can be obtained by 
integrating over all the values of the standard deviation: 

P(a[ x l i , I  ) ¢x [ (x  1 - a ) 2 +  s 2] n/2 (A16) 

and equivalently for P(blx2~,I) .Then the probability of model b being greater 
than model a is 

P(b >alxli,x2j,I)= f _ ~ d a f ~ d b P ( a l x l i , I ) P ( b l x 2 j , I )  (A17) 

We obtain P(b > a ) =  0.92. We can see that even with small samples we can 
obtain a rather high probability, confirming what it is obvious at first sight: that 
Population 2 has a greater average value. 

Turning again to the problem at hand, it is only now, when we have determined 
the probability of the parameters P({o~} I d,I)  of the model, and we have obtained 
the optimal parameters ¢Oo, that we can estimate the noise variance: 

(~r 2) = d2(ti)  - (A18) 
m - N -  2 [ti=l 

and the signal-to-noise ratio 

signal/noise = 1 + ~ (A19) 

The patterns a~ are easily determined by inverting Eq. (2) using the orthonor- 
real functions H~. 

To estimate the error for the parameters, we build a 2  matrix, with elements 
b~, given by 

O2h 2 
b~u = - ( N / 2 )  - -  (A20) 

atovat % 

Let A t be the/~-eigenvalue of matrix 8 ,  and u ~  the corresponding eigenvector. 
Then 

N 2 
72 ~ (0"2) E uvl~ ( A 2 1 )  

/x=l A,u, 

and 

w~ = O~o~ _+ ,/v (A22) 

Equivalently, we could estimate the error for the patterns at, as functions of (o -e) 
and coefficients C~u of Eq. (11). 
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